# Turning Points and Nature

A function’s turning point is where $f'(x)=0$.

A maximum turning point is a turning point where the curve is concave up (from increasing to decreasing ) and $f^{\prime}(x)=0$ at the point.
$$\begin{array}{|c|c|c|} \hline f^{\prime}(x) \gt 0 & f'(x) = 0 & f'(x) \lt 0 \\ \hline & \text{maximum} & \\ \nearrow & & \searrow \\ \hline \end{array}$$
A minimum turning point is a turning point where the curve is concave down (from decreasing to increasing) and $f^{\prime}(x)=0$ at the point.
$$\begin{array}{|c|c|c|} \hline f^{\prime}(x) \lt 0 & f^{\prime}(x) = 0 & f^{\prime}(x) \gt 0 \\ \hline \searrow & & \nearrow \\ & \text{minimum} & \\ \hline \end{array}$$

### Example 1

Find any turning points and their nature of $f(x) =2x^3-9x^2+12x+3$.

\begin{align} \displaystyle \require{color} f^{\prime}(x) &= 6x^2-18x+12 \\ 6x^2-18x+12 &= 0 \\ x^2-3x+2 &= 0 \\ (x-1)(x-2) &= 0 \\ x &= 1 \text{ or } x=2 \\ f(1) &= 2 \times 1^3-9 \times 1^2+12 \times 1+3 \\ &= 8 \\ f(2) &= 2 \times 2^3-9 \times 2^2+12 \times 2+3 \\ &= 7 \\ \end{align}
There are two turning points; $(1,8)$ and $(2,7)$.
\begin{align} \displaystyle \require{color} f^{\prime}(0) &= 6 \times 0^2-18 \times 0 + 12 \\ &= +12 \\ f^{\prime}(1.5) &= 6 \times 1.5^2-18 \times 1.5 + 12 \\ &= -1.5 \\ f^{\prime}(3) &= 6 \times 3^2-18 \times 3 + 12 \\ &= +12 \end{align}
$$\begin{array}{|c|c|c|c|c|c|} \hline x & 0 & 1 & 1.5 & 2 & 3 \\ \hline f^{\prime}(x) & +12 & 0 & -1.5 & 0 & +12 \\ \hline \text{shape} & \nearrow & \text{max} & \searrow & \text{min} & \nearrow \\ \hline \end{array}$$
Therefore $(1,8)$ is a maximum turning point and $(2,7)$ is a minimum turning point.

### Example 2

Find any turning points and their nature of $f(x) =-x^3+6x^2-9x-5$.

\begin{align} \displaystyle f^{\prime}(x) &= -3x^2+12x-9 \\ -3x^2+12x-9 &= 0 \\ x^2+4x-3 &= 0 \\ (x-1)(x-3) &= 0 \\ x &= 1 \text{ or } x=3 \\ f^{\prime}(0) &= -3 \times 0^2 + 12 \times 0-9 \\ &= -9 \\ f^{\prime}(2) &= -3 \times 2^2 + 12 \times 2-9 \\ &= +3 \\ f^{\prime}(4) &= -3 \times 4^2 + 12 \times 4-9 \\ &= -9 \end{align}
$$\begin{array}{|c|c|c|c|c|c|} \hline x & 0 & 1 & 2 & 3 & 4 \\ \hline f^{\prime}(x) & -9 & 0 & +3 & 0 & -9 \\ \hline \text{shape} & \searrow & \text{min} & \nearrow & \text{max} & \searrow \\ \hline \end{array}$$
\begin{align} f(1) & = -1^3 +6 \times 1^2-9 \times 1-5 \\ &= -9 \\ f(3) & = -3^3 +6 \times 3^2-9 \times 3-5 \\ &= -5 \end{align}
Therefore $(1,-9)$ is a minimum turning point and $(3,-5)$ is a maximum turning point.

## Determining the Nature of Turning Points by Concavities

\begin{array}{|c|c|} \hline
\text{concave downwards} & \text{concave upwards} \\ \hline
\cup \text{ shape} & \cap \text{ shape} \\ \hline
f^{\prime \prime}(x) \gt 0 & f^{\prime \prime}(x) \lt 0 \\ \hline
\end{array}
A maximum turning point is a turning point where the curve is concave upwards, $f^{\prime \prime}(x) \lt 0$ and $f^{\prime}(x)=0$ at the point.
A minimum turning point is a turning point where the curve is concave downwards, $f^{\prime \prime}(x) \gt 0$ and $f^{\prime}(x)=0$ at the point.

$$\begin{array}{|c|c|} \hline \text{maximum turning point} & \text{minimum turning point} \\ \hline f^{\prime}(x) = 0 & f'(x) = 0 \\ \hline f^{\prime \prime}(x) \lt 0 & f^{\prime \prime}(x) \gt 0 \\ \hline \end{array}$$

### Example 3

Use second derivatives to find any turning points and their nature of $f(x) =2x^3-9x^2+12x+3$.

\begin{align} \displaystyle \require{color} f^{\prime}(x) &= 6x^2-18x+12 \\ 6x^2-18x+12 &= 0 \\ x^2-3x+2 &= 0 \\ (x-1)(x-2) &= 0 \\ x &= 1 \text{ or } x=2 \\ f(1) &= 2 \times 1^3-9 \times 1^2+12 \times 1+3 \\ &= 8 \\ f(2) &= 2 \times 2^3-9 \times 2^2+12 \times 2+3 \\ &= 7 \end{align}
There are two turning points; $(1,8)$ and $(2,7)$.
\begin{align} \displaystyle \require{color} f^{\prime \prime}(x) &= 12x-18 \\ f^{\prime \prime}(1) &= 12 \times 1-18 \\ &= -6 \lt 0 \\ \end{align}
This indicates that point $(1,8)$ is a maximum turning point.
\begin{align} \displaystyle \require{color} f^{\prime \prime}(2) &= 12 \times 2-18 \\ &= +6 \gt 0 \end{align}
This indicates that point $(2,7)$ is a minimum turning point.

### Example 4

Use second derivatives to find any turning points and their nature of $f(x) =-x^3+6x^2-9x-5$.

\begin{align} \displaystyle f^{\prime}(x) &= -3x^2+12x-9 \\ -3x^2+12x-9 &= 0 \\ x^2+4x-3 &= 0 \\ (x-1)(x-3) &= 0 \\ x &= 1 \text{ or } x=3 \\ f(1) & = -1^3 +6 \times 1^2-9 \times 1-5 \\ &= -9 \\ f(3) & = -3^3 +6 \times 3^2-9 \times 3-5 \\ &= -5 \end{align}
There are two turning points; $(1,-9)$ and $(3,-5)$.
\begin{align} \displaystyle f^{\prime \prime}(x) &= -6x+12 \\ f^{\prime \prime}(1) &= -6 \times 1 + 12 \\ &= +6 \gt 0 \\ \end{align}
This indicates that point $(1,-9)$ is a minimum turning point.
\begin{align} \displaystyle f^{\prime \prime}(3) &= -6 \times 3 + 12 \\ &= -6 \lt 0 \end{align}
This indicates that point $(3,-5)$ is a maximum turning point. ## Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

## Probability Pro: Mastering Two-Way Tables with Ease

Welcome to a comprehensive guide on mastering probability through the lens of two-way tables. If you’ve ever found probability challenging, fear not. We’ll break it…

## High School Math for Life: Making Sense of Earnings

Salary Salary refers to the fixed amount of money that an employer pays an employee at regular intervals, typically on a monthly or biweekly basis,…

## Binomial Expansions

The sum $a+b$ is called a binomial as it contains two terms.Any expression of the form $(a+b)^n$ is called a power of a binomial. All…

## Induction Made Simple: The Ultimate Guide

“Induction Made Simple: The Ultimate Guide” is your gateway to mastering the art of mathematical induction, demystifying a powerful tool in mathematics. This ultimate guide…

#### Responses

1. Hey, your website is just displaying arrays and some code but not the equation. Please inform your engineers.

1. Thanks for reaching us. Could you please let us know whether those errors are still outstanding in your point of view if you can again for us? Thanks.

1. Hi the website is still just displaying random code
Thank you

1. Thanks, Danesh.
Please feel free to take a look at the post, and hope everything becomes OK now.

2. Thanks for your nice and warm feedback. Please feel free to let us know if you have any particular topic that we can publish.

3. Thank-you! We’ll do our very best to publish quality blog posts.