Turning Points and Nature

Turning Points and Nature

A function’s turning point is where $f'(x)=0$.

A maximum turning point is a turning point where the curve is concave up (from increasing to decreasing ) and $f^{\prime}(x)=0$ at the point.
$$ \begin{array}{|c|c|c|} \hline
f^{\prime}(x) \gt 0 & f'(x) = 0 & f'(x) \lt 0 \\ \hline
& \text{maximum} & \\
\nearrow & & \searrow \\ \hline
\end{array} $$
A minimum turning point is a turning point where the curve is concave down (from decreasing to increasing) and $f^{\prime}(x)=0$ at the point.
$$ \begin{array}{|c|c|c|} \hline
f^{\prime}(x) \lt 0 & f^{\prime}(x) = 0 & f^{\prime}(x) \gt 0 \\ \hline
\searrow & & \nearrow \\
& \text{minimum} & \\ \hline
\end{array} $$

Example 1

Find any turning points and their nature of $f(x) =2x^3-9x^2+12x+3$.

\( \begin{align} \displaystyle \require{color}
f^{\prime}(x) &= 6x^2-18x+12 \\
6x^2-18x+12 &= 0 \\
x^2-3x+2 &= 0 \\
(x-1)(x-2) &= 0 \\
x &= 1 \text{ or } x=2 \\
f(1) &= 2 \times 1^3-9 \times 1^2+12 \times 1+3 \\
&= 8 \\
f(2) &= 2 \times 2^3-9 \times 2^2+12 \times 2+3 \\
&= 7 \\
\end{align} \)
There are two turning points; $(1,8)$ and $(2,7)$.
\( \begin{align} \displaystyle \require{color}
f^{\prime}(0) &= 6 \times 0^2-18 \times 0 + 12 \\
&= +12 \\
f^{\prime}(1.5) &= 6 \times 1.5^2-18 \times 1.5 + 12 \\
&= -1.5 \\
f^{\prime}(3) &= 6 \times 3^2-18 \times 3 + 12 \\
&= +12
\end{align} \)
$$ \begin{array}{|c|c|c|c|c|c|} \hline
x & 0 & 1 & 1.5 & 2 & 3 \\ \hline
f^{\prime}(x) & +12 & 0 & -1.5 & 0 & +12 \\ \hline
\text{shape} & \nearrow & \text{max} & \searrow & \text{min} & \nearrow \\ \hline
\end{array} $$
Therefore $(1,8)$ is a maximum turning point and $(2,7)$ is a minimum turning point.

Example 2

Find any turning points and their nature of $f(x) =-x^3+6x^2-9x-5$.

\( \begin{align} \displaystyle
f^{\prime}(x) &= -3x^2+12x-9 \\
-3x^2+12x-9 &= 0 \\
x^2+4x-3 &= 0 \\
(x-1)(x-3) &= 0 \\
x &= 1 \text{ or } x=3 \\
f^{\prime}(0) &= -3 \times 0^2 + 12 \times 0-9 \\
&= -9 \\
f^{\prime}(2) &= -3 \times 2^2 + 12 \times 2-9 \\
&= +3 \\
f^{\prime}(4) &= -3 \times 4^2 + 12 \times 4-9 \\
&= -9
\end{align} \)
$$ \begin{array}{|c|c|c|c|c|c|} \hline
x & 0 & 1 & 2 & 3 & 4 \\ \hline
f^{\prime}(x) & -9 & 0 & +3 & 0 & -9 \\ \hline
\text{shape} & \searrow & \text{min} & \nearrow & \text{max} & \searrow \\ \hline
\end{array} $$
\( \begin{align}
f(1) & = -1^3 +6 \times 1^2-9 \times 1-5 \\
&= -9 \\
f(3) & = -3^3 +6 \times 3^2-9 \times 3-5 \\
&= -5
\end{align} \)
Therefore $(1,-9)$ is a minimum turning point and $(3,-5)$ is a maximum turning point.

Determining the Nature of Turning Points by Concavities

\begin{array}{|c|c|} \hline
\text{concave downwards} & \text{concave upwards} \\ \hline
\cup \text{ shape} & \cap \text{ shape} \\ \hline
f^{\prime \prime}(x) \gt 0 & f^{\prime \prime}(x) \lt 0 \\ \hline
\end{array}
A maximum turning point is a turning point where the curve is concave upwards, $f^{\prime \prime}(x) \lt 0$ and $f^{\prime}(x)=0$ at the point.
A minimum turning point is a turning point where the curve is concave downwards, $f^{\prime \prime}(x) \gt 0$ and $f^{\prime}(x)=0$ at the point.

$$ \begin{array}{|c|c|} \hline
\text{maximum turning point} & \text{minimum turning point} \\ \hline
f^{\prime}(x) = 0 & f'(x) = 0 \\ \hline
f^{\prime \prime}(x) \lt 0 & f^{\prime \prime}(x) \gt 0 \\ \hline
\end{array} $$

Example 3

Use second derivatives to find any turning points and their nature of $f(x) =2x^3-9x^2+12x+3$.

\( \begin{align} \displaystyle \require{color}
f^{\prime}(x) &= 6x^2-18x+12 \\
6x^2-18x+12 &= 0 \\
x^2-3x+2 &= 0 \\
(x-1)(x-2) &= 0 \\
x &= 1 \text{ or } x=2 \\
f(1) &= 2 \times 1^3-9 \times 1^2+12 \times 1+3 \\
&= 8 \\
f(2) &= 2 \times 2^3-9 \times 2^2+12 \times 2+3 \\
&= 7
\end{align} \)
There are two turning points; $(1,8)$ and $(2,7)$.
\( \begin{align} \displaystyle \require{color}
f^{\prime \prime}(x) &= 12x-18 \\
f^{\prime \prime}(1) &= 12 \times 1-18 \\
&= -6 \lt 0 \\
\end{align} \)
This indicates that point $(1,8)$ is a maximum turning point.
\( \begin{align} \displaystyle \require{color}
f^{\prime \prime}(2) &= 12 \times 2-18 \\
&= +6 \gt 0
\end{align} \)
This indicates that point $(2,7)$ is a minimum turning point.

Example 4

Use second derivatives to find any turning points and their nature of $f(x) =-x^3+6x^2-9x-5$.

\( \begin{align} \displaystyle
f^{\prime}(x) &= -3x^2+12x-9 \\
-3x^2+12x-9 &= 0 \\
x^2+4x-3 &= 0 \\
(x-1)(x-3) &= 0 \\
x &= 1 \text{ or } x=3 \\
f(1) & = -1^3 +6 \times 1^2-9 \times 1-5 \\
&= -9 \\
f(3) & = -3^3 +6 \times 3^2-9 \times 3-5 \\
&= -5
\end{align} \)
There are two turning points; $(1,-9)$ and $(3,-5)$.
\( \begin{align} \displaystyle
f^{\prime \prime}(x) &= -6x+12 \\
f^{\prime \prime}(1) &= -6 \times 1 + 12 \\
&= +6 \gt 0 \\
\end{align} \)
This indicates that point $(1,-9)$ is a minimum turning point.
\( \begin{align} \displaystyle
f^{\prime \prime}(3) &= -6 \times 3 + 12 \\
&= -6 \lt 0
\end{align} \)
This indicates that point $(3,-5)$ is a maximum turning point.

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *

    1. Thanks for reaching us. Could you please let us know whether those errors are still outstanding in your point of view if you can again for us? Thanks.