# Online Courses

51 Lessons

## VCE Mathematical Methods Units 1 and 2 – Functions and Graphs

1.1 Coordinate Geometry1.2 Functions1.3 Polynomials1.4 Trigonometry1.5 Radian Measure1.6 Exponential Graphs1.7 Logarithmic Graphs1.8 Exponential Growth and Decay

0% Complete
0/0 Steps
61 Lessons

## VCE Mathematical Methods Units 1 and 2 – Algebra

2.1 Algebraic Expressions2.2 Parameters2.3 Transformations2.4 Polynomials2.5 Simultaneous Equations2.6 Inverse Functions2.7 Equations2.8 Exponents2.9 Logarithms

0% Complete
0/0 Steps
30 Lessons

## VCE Mathematical Methods Units 1 and 2 – Calculus

3.1 Rates of Change3.2 Differentiation3.3 Application of Differentiation3.4 Integration

0% Complete
0/0 Steps
24 Lessons

## VCE Mathematical Methods Units 1 and 2 – Probability and Statistics

4.1 Probability4.2 Counting Techniques

0% Complete
0/0 Steps

## Unit 1

Mathematical Methods Units 1 and 2 provide an introductory study of simple elementary functions of a single real variable, algebra, calculus, probability and statistics and their applications in various practical and theoretical contexts. They are designed as preparation for Mathematical Methods Units 3 and 4 and contain assumed knowledge and skills for these units. The focus of Unit 1 is the study of simple algebraic functions, and the areas of study are ‘Functions and graphs’, ‘Algebra’, ‘Calculus’ and ‘Probability and statistics’. At the end of Unit 1, students are expected to have covered the content outlined in each area of study, except for ‘Algebra’ which extends across Units 1 and 2. This content should be presented so that there is a balanced and progressive development of skills and knowledge from each of the four areas of study, with connections between and across the areas of study being developed consistently throughout both Units 1 and 2.

In undertaking this unit, students are expected to be able to apply techniques, routines and processes involving rational and real arithmetic, sets, lists and tables, diagrams and geometric constructions, algebraic manipulation, equations, graphs and differentiation with and without the use of technology. They should have the facility with relevant mental and by-hand approaches to estimation and computation. Using numerical, graphical, geometric, symbolic and statistical functionality of technology for teaching and learning mathematics, working mathematically, and in related assessment, is to be incorporated throughout the unit as applicable.

## Unit 2

In Unit 2, students focus on studying simple transcendental functions and the calculus of simple algebraic functions. The areas of study are ‘Functions and graphs’, ‘Algebra’, ‘Calculus’, and ‘Probability and statistics’. At the end of Unit 2, students are expected to have covered the material outlined in each study area. Material from the ‘Functions and graphs’, ‘Algebra’, ‘Calculus’, and ‘Probability and statistics’ areas of study should be organised so that there is a clear progression of skills and knowledge from Unit 1 to Unit 2 in each area of study.

In undertaking this unit, students are expected to be able to apply techniques, routines and processes involving rational and real arithmetic, sets, lists and tables, diagrams and geometric constructions, algebraic manipulation, equations, graphs, differentiation and anti-differentiation with and without the use of technology. They should have the facility with relevant mental and by-hand approaches to estimation and computation. Using numerical, graphical, geometric, symbolic and statistical functionality of technology for teaching and learning mathematics, for working mathematically, and in related assessment is to be incorporated throughout the unit as applicable.

source – VCE Mathematics Study Design