$$ \begin{align} \displaystyle \int_{n}^{m}{\dfrac{1}{x}}dx &= \big[\log_e{x}\big]_{n}^{m} \\ &= \log_{e}{m} – \log_{e}{n} \end{align} $$ Generally, $$ \begin{align} \displaystyle \int_{n}^{m}{\dfrac{f'(x)}{f(x)}}dx &= \big[\log_e{f(x)}\big]_{n}^{m} \\ &= \log_{e}{f(m)} – \log_{e}{f(n)} \end{align} $$ Example 1 Find $\displaystyle \int_{1}^{5}{\dfrac{2}{x}}dx$. \( \begin{align} \displaystyle \int_{1}^{5}{\dfrac{2}{x}}dx &= 2\int_{1}^{5}{\dfrac{1}{x}}dx \\ &= 2\big[\log_{e}{x}\big]_{1}^{5} \\ &= 2 \log_{e}{5} – 2 \log_{e}{1} \\ &= 2 \log_{e}{5} – 2 \times […]
