Long Division of Polynomials

Example 1
Divide \( x^3 + 3x^3 + 2x + 1 \) by \( x+2 \).
[showhide type=”Q01″ more_text=”SHOW STEP 1″ less_text=”HIDE STEP 1″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[yellow]{x^2} \\ \bbox[orange]{x}+2 \enclose{longdiv}{\bbox[pink]{x^3} +4x^2 +2x +1} \cdots \bbox[orange]{x} \times \bbox[yellow]{x^2} = \bbox[pink]{x^3} \)
[/showhide]
[showhide type=”Q02″ more_text=”SHOW STEP 2″ less_text=”HIDE STEP 2″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[yellow]{x^2} \\ \bbox[orange]{x+2} \enclose{longdiv}{x^3 +4x^2 +2x +1} \\ \ \ \ \ \ \ \ \ \ \ \ \underline{\bbox[pink]{x^3+2x^2}} \cdots \bbox[orange]{(x+2)} \times \bbox[yellow]{x^2} = \bbox[pink]{x^3+2x^2} \)
[/showhide]
[showhide type=”Q03″ more_text=”SHOW STEP 3″ less_text=”HIDE STEP 3″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x^2 \\ x+2 \enclose{longdiv}{x^3 + \bbox[yellow]{4x^2} +2x +1} \\ \ \ \ \ \ \ \ \ \ \ \ \underline{x^3+ \bbox[yellow]{2x^2}} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[yellow]{2x^2}+2x+1 \cdots \bbox[yellow]{4x^2-2x^2 = 2x^2} \)
[/showhide]
[showhide type=”Q04″ more_text=”SHOW STEP 4″ less_text=”HIDE STEP 4″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x^2 + \bbox[yellow]{2x} \\ \bbox[orange]{x}+2 \enclose{longdiv}{x^3 +4x^2 +2x +1} \\ \ \ \ \ \ \ \ \ \ \ \ \underline{x^3+2x^2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[pink]{2x^2} + 2x+1 \cdots \bbox[orange]{x} \times \bbox[yellow]2x = \bbox[pink]{2x^2} \)
[/showhide]
[showhide type=”Q05″ more_text=”SHOW STEP 5″ less_text=”HIDE STEP 5″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x^2 + \bbox[yellow]{2x} \\ \bbox[orange]{x+2} \enclose{longdiv}{x^3 +4x^2 +2x +1} \\ \ \ \ \ \ \ \ \ \ \ \ \underline{x^3+2x^2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x^2+2x+1 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{\bbox[pink]{2x^2+4x}} \cdots \bbox[orange]{(x+2)} \times \bbox[yellow]{2x} = \bbox[pink]{2x^2 + 4x} \)
[/showhide]
[showhide type=”Q06″ more_text=”SHOW STEP 6″ less_text=”HIDE STEP 6″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x^2 +2x \\ x+2 \enclose{longdiv}{x^3 +4x^2 +2x +1} \\ \ \ \ \ \ \ \ \ \ \ \ \underline{x^3+2x^2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[yellow]{2x^2+2x+1} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{\bbox[yellow]{2x^2+4x}} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[yellow]{-2x+1} \cdots \bbox[yellow]{(2x^2+2x+1)-(2x^2+4x) = -2x+1} \)
[/showhide]
[showhide type=”Q07″ more_text=”SHOW STEP 7″ less_text=”HIDE STEP 7″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x^2 +2x \bbox[yellow]{-2} \\ \bbox[orange]{x}+2 \enclose{longdiv}{x^3 +4x^2 +2x +1} \\ \ \ \ \ \ \ \ \ \ \ \ \underline{x^3+2x^2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x^2+2x+1 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{2x^2+4x} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[pink]{-2x}+1 \cdots \bbox[yellow]{-2} \times \bbox[orange]{x} = \bbox[pink]{-2x} \)
[/showhide]
[showhide type=”Q08″ more_text=”SHOW STEP 8″ less_text=”HIDE STEP 8″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x^2 +2x \bbox[yellow]{-2} \\ \bbox[orange]{x+2} \enclose{longdiv}{x^3 +4x^2 +2x +1} \\ \ \ \ \ \ \ \ \ \ \ \ \underline{x^3+2x^2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x^2+2x+1 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{2x^2+4x} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -2x+1 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{\bbox[pink]{-2x-4}} \cdots \bbox[yellow]{-}2 \times \bbox[orange]{(x+2)} = \bbox[pink]{-2x-4} \)
[/showhide]
[showhide type=”Q09″ more_text=”SHOW STEP 9″ less_text=”HIDE STEP 9″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x^2+2x-2 \\ x+2 \enclose{longdiv}{x^3 +4x^2 +2x +1} \\ \ \ \ \ \ \ \ \ \ \ \ \underline{x^3+2x^2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x^2+2x+1 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{2x^2+4x} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[yellow]{-2x+1} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{\bbox[yellow]{-2x-4}} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[yellow]{5} \cdots \bbox[yellow]{(-2x+1)-(-2x-4) = 5} \)
[/showhide]
Example 2
Perform a long division: \( (4x^4-6x^3+2x^2-3x+5) \div (2x+1) \).
[showhide type=”Q21″ more_text=”SHOW STEP 1″ less_text=”HIDE STEP 1″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[yellow]{2x^3} \\ \bbox[orange]{2x}+1 \enclose{longdiv} {\bbox[pink]{4x^4}-6x^3 + 2x^2-3x + 5} \cdots \bbox[pink]{4x^4} \div \bbox[orange]{2x} = \bbox[yellow]{2x^3} \)
[/showhide]
[showhide type=”Q22″ more_text=”SHOW STEP 2″ less_text=”HIDE STEP 2″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[yellow]{2x^3} \\ \bbox[orange]{2x+1} \enclose{longdiv} {4x^4-6x^3 + 2x^2-3x + 5} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{\bbox[pink]{4x^4+2x^3}} \leftarrow \bbox[orange]{(2x+1)} \times \bbox[yellow]{2x^3} \)
[/showhide]
[showhide type=”Q23″ more_text=”SHOW STEP 3″ less_text=”HIDE STEP 3″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x^3 \\ 2x+1 \enclose{longdiv} {4x^4 \bbox[yellow]{-6x^3} + 2x^2-3x + 5} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{4x^4 \bbox[orange]{+2x^3}} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[pink]{-8x^3} + 2x^2 \cdots \bbox[yellow]{(-6x^3)}-\bbox[orange]{2x^3} = \bbox[pink]{-8x^3} \)
[/showhide]
[showhide type=”Q24″ more_text=”SHOW STEP 4″ less_text=”HIDE STEP 4″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x^3 \bbox[yellow]{-4x^2} \\ \bbox[orange]{2x}+1 \enclose{longdiv} {4x^4-6x^3 + 2x^2-3x + 5} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{4x^4+2x^3} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[pink]{-8x^3} + 2x^2 \cdots \bbox[pink]{-8x^3} \div \bbox[orange]{2x} = \bbox[yellow]{- 4x^2} \)
[/showhide]
[showhide type=”Q25″ more_text=”SHOW STEP 5″ less_text=”HIDE STEP 5″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x^3 \bbox[yellow]{-4x^2} \\ \bbox[orange]{2x+1} \enclose{longdiv} {4x^4-6x^3 + 2x^2-3x + 5} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{4x^4+2x^3} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -8x^3+2x^2 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{\bbox[pink]{-8x^3-4x^2}} \leftarrow \bbox[orange]{(2x+1)} \times \bbox[yellow]{-4x^2} = \bbox[pink]{-8x^3-4x^2} \)
[/showhide]
[showhide type=”Q26″ more_text=”SHOW STEP 6″ less_text=”HIDE STEP 6″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x^3-4x^2 \\ 2x+1 \enclose{longdiv} {4x^4-6x^3 + 2x^2-3x + 5} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{4x^4+2x^3} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -8x^3 \bbox[yellow]{+2x^2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{-8x^3 \bbox[orange]{-4x^2}} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[pink]{6x^2}-3x \cdots \bbox[yellow]{+2x^2}-\bbox[orange]{-4x^2} = \bbox[pink]{6x^2} \)
[/showhide]
[showhide type=”Q27″ more_text=”SHOW STEP 7″ less_text=”HIDE STEP 7″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x^3-4x^2 + \bbox[yellow]{3x} \\ \bbox[orange]{2x}+1 \enclose{longdiv} {4x^4-6x^3 + 2x^2-3x + 5} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{4x^4+2x^3} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -8x^3+2x^2 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{-8x^3-4x^2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[pink]{6x^2}-3x \cdots \bbox[pink]{6x^2} \div \bbox[orange]{2x} = \bbox[yellow]{3x} \)
[/showhide]
[showhide type=”Q28″ more_text=”SHOW STEP 8″ less_text=”HIDE STEP 8″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x^3-4x^2 + \bbox[yellow]{3x} \\ \bbox[orange]{2x+1} \enclose{longdiv} {4x^4-6x^3 + 2x^2-3x + 5} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{4x^4+2x^3} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -8x^3+2x^2 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{-8x^3-4x^2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6x^2-3x \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{\bbox[pink]{6x^2+3x}} \leftarrow \bbox[orange]{(2x+1)} \times \bbox[yellow]{3x} \)
[/showhide]
[showhide type=”Q29″ more_text=”SHOW STEP 9″ less_text=”HIDE STEP 9″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x^3-4x^2 + 3x \\ 2x+1 \enclose{longdiv} {4x^4-6x^3 + 2x^2-3x + 5} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{4x^4+2x^3} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -8x^3+2x^2 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{-8x^3-4x^2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6x^2 \bbox[yellow]{-3x} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{6x^2 \bbox[orange]{+3x}} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[pink]{-6x}+5 \cdots \bbox[yellow]{-3x}-\bbox[orange]{+3x} = \bbox[pink]{-6x} \)
[/showhide]
[showhide type=”Q2A” more_text=”SHOW STEP 10″ less_text=”HIDE STEP 10″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x^3-4x^2 + 3x \bbox[yellow]{-3} \\ \bbox[orange]{2x} + 1 \enclose{longdiv} {4x^4-6x^3 + 2x^2-3x + 5} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{4x^4+2x^3} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -8x^3+2x^2 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{-8x^3-4x^2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6x^2-3x \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{6x^2+3x} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[pink]{-6x}+5 \cdots \bbox[pink]{-6x} \div \bbox[orange]{2x} = \bbox[yellow]{-3} \)
[/showhide]
[showhide type=”Q2B” more_text=”SHOW STEP 11″ less_text=”HIDE STEP 11″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x^3-4x^2 + 3x \bbox[yellow]{-3} \\ \bbox[orange]{2x+1} \enclose{longdiv} {4x^4-6x^3 + 2x^2-3x + 5} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{4x^4+2x^3} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -8x^3+2x^2 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{-8x^3-4x^2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6x^2-3x \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{6x^2+3x} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -6x+5 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{\bbox[pink]{-6x-3}} \leftarrow \bbox[orange]{(2x+1)} \times \bbox[yellow]{-3} \)
[/showhide]
[showhide type=”Q2C” more_text=”SHOW STEP 12″ less_text=”HIDE STEP 12″]
\( \require{AMSsymbols} \require{enclose} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x^3-4x^2 + 3x-3 \\ 2x+1 \enclose{longdiv} {4x^4-6x^3 + 2x^2-3x + 5} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{4x^4+2x^3} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -8x^3+2x^2 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{-8x^3-4x^2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6x^2-3x \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{6x^2+3x} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -6x \bbox[yellow]{+5} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{-6x \bbox[orange]{-3}} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bbox[pink]{8} \leftarrow \bbox[yellow]{+5} – \bbox[orange]{-3} \)
[/showhide]
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume
Responses