Horizontal (stationary) point of inflection (inflection point)

If $x \lt a$, then $f'(x) \gt 0$ and $f^{\prime \prime}(x) \le 0 \rightarrow$ concave down.
If $x = a$, then $f'(x) = 0$ and $f^{\prime \prime}(x) = 0 \rightarrow$ horizontal point inflection.
If $x \gt a$, then $f'(x) \gt 0$ and $f^{\prime \prime}(x) \ge 0 \rightarrow$ concave up.
The gradient is positive on either side of the stationary point.

If $x \lt a$, then $f^{\prime}(x) \lt 0$ and $f^{\prime \prime}(x) \ge 0 \rightarrow$ concave up.
If $x = a$, then $f^{\prime}(x) = 0$ and $f^{\prime \prime}(x)=0 \rightarrow$ horizontal point of inflection.
If $x \gt a$, then $f^{\prime}(x) \lt 0$ and $f^{\prime \prime}(x) \le 0 \rightarrow$ concave down.
The gradient is negative on either side of the stationary point.
Not all points of inflection (inflection points) are stationary points



The gradient of the tangent is not equal to 0. At the point of inflection, $f'(x) \ne 0$ and $f^{\prime \prime}(x)=0$.
When determining the nature of stationary points, it is helpful to complete a ‘gradient table, which shows the sign of the gradient on either side of any stationary points. This is known as the first derivative test.
Example 1
Find the points of inflection (inflection points) of $f(x)=2x^3-18x^2+30x+1$.
\( \begin{align} \displaystyle
f^{\prime}(x) &= 6x^2-36x+30 \\
f^{\prime \prime}(x) &= 12x-36 \\
12x-36 &= 0 \\
x-3 &= 0 \\
x &= 3 \\
f^{\prime}(3) &= 6 \times 3^2-36 \times 3 + 30 \\
&= -24 \\
f(3) &= 2 \times 3^3-18 \times 3^2 + 30 \times 3+1 \\
&= -44 \\
f^{\prime}(3) &\ne 0 \text{ and } f^{\prime \prime}(3) = 0
\end{align} \)
Therefore the point $(3,-44)$ is a non-horizontal point of inflection.
Example 2
Find the points of inflection (inflection points) of $f(x)=x^3+6x^2+12x+7$.
\( \begin{align} \displaystyle
f^{\prime}(x) &= 3x^2+12x+12 \\
f^{\prime \prime}(x) &= 6x+12 \\
6x+12 &= 0 \\
x+2 &= 0 \\
x &= -2 \\
f^{\prime}(-2) &= 3 \times (-2)^2 + 12 \times (-2) + 12 \\
&= 0 \\
f(-2) &= (-2)^3 + 6 \times (-2)^2 + 12 \times (-2) + 7 \\
&= -1 \\
f^{\prime}(-2) &= 0 \text{ and } f^{\prime \prime}(-2) = 0
\end{align} \)
Therefore the point $(-2,-1)$ is a horizontal point of inflection.
Example 3
Find intervals where $f(x)=x^4 + 2x^3 – 12x^2 – 2x + 7$ is concave up or down.
\( \begin{align} \displaystyle
f^{\prime}(x) &= 4x^3 + 6x^2-24x-2 \\
f^{\prime \prime}(x) &= 12x^2 + 12x-24 \\
12x^2 + 12x-24 &\gt 0 &\text{concave upwards} \\
x^2 + x-2 &\gt 0 \\
(x+2)(x-1) &\gt 0 \\
x &\lt -2 \text{ or } x \gt 1 &\text{concave upwards} \\
-2 &\lt x \lt 1 &\text{concave downwards}
\end{align} \)
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume