Binomial Coefficient

Binomial Coefficient

$$\binom{n}{k}=\dfrac{n!}{k!(n-k)!}$$
Note that the binomial coefficient is sometimes written $^nC_k$ or $C^n_k$, depending on authors or geographical regions.

\( \begin{aligned}
\binom{n}{k} &= \dfrac{n!}{k!(n-k)!} \cdots (1) \\
\binom{n}{n-k} &= \dfrac{n!}{(n-k)!(n-(n-k))!} = \dfrac{n!}{(n-k)!k!} \cdots (2) \\
\therefore \binom{n}{k} &= \binom{n}{n-k} \text{by } (1) \text{ and } (2) \\
\end{aligned} \)

This means;
\( \begin{aligned}
\binom{10}{2} &= \binom{10}{8} \\
\binom{100}{1} &= \binom{100}{99} \\
\end{aligned} \)

The following binomial coefficients are undefined.

\( \displaystyle \binom{5}{7} = \dfrac{5!}{7! \times (5-7)!} \rightarrow (-2)! \) is undefined

\( \displaystyle \binom{5}{3.3} = \dfrac{5!}{3.3! \times (5-3.3)!} \rightarrow 3.3!\) is undefined

\( \displaystyle \binom{5.2}{3} = \dfrac{5.2!}{5.2! \times (5.2-3)!} \rightarrow 5.2! \) is undefined

\( \displaystyle\binom{5}{-2} = \dfrac{5!}{(-2)! \times (5-(-2))!} \rightarrow (-2)! \) is undefined

Relationship with Pascal’s triangle

\( \begin{matrix}
n=0&&&&&&1 \\
&&&&&&\displaystyle\binom{0}{0} \\
n=1&&&&&1&&1 \\
&&&&&\displaystyle \binom{1}{0}&& \displaystyle\binom{1}{1} \\
n=2&&&&1&&2&&1 \\
&&&&\displaystyle \binom{2}{0} &&\displaystyle \binom{2}{1} &&\displaystyle \binom{2}{2} \\
n=3&&&1&&3&&3&&1 \\
&&&\displaystyle \binom{3}{0} &&\displaystyle \binom{3}{1} &&\displaystyle \binom{3}{2} &&\displaystyle \binom{3}{3} \\
n=4&&1&&4&&6&&4&&1 \\
&&\displaystyle \binom{4}{0} &&\displaystyle \binom{4}{1} &&\displaystyle \binom{4}{2} &&\displaystyle \binom{4}{3} &&\displaystyle \binom{4}{4} \\
\end{matrix} \)

Example 1

Simplify $ \displaystyle \binom{n}{n-1}$.

\( \begin{align} \displaystyle
\binom{n}{n-1} &= \dfrac{n!}{(n-1)! \times 1!} \\
&= \dfrac{n \times (n-1)!}{(n-1)!} \\
&= n
\end{align} \)

Example 2

Evaluate $ \displaystyle \binom{8}{2}$.

\( \begin{align} \displaystyle
\binom{8}{2} &= \dfrac{8!}{2! \times 6!} \\
&= \dfrac{8 \times 7 \times 6!}{2 \times 1 \times 6!} \\
&= \dfrac{8 \times 7}{2} \\
&= 28 \\
\end{align} \)

Example 3

Evaluate $ \displaystyle \binom{8}{0}$.

\( \begin{align} \displaystyle
\binom{8}{0} &= \dfrac{8!}{0! \times 8!} \\
&= \dfrac{8!}{1 \times 8!} \\
&= 1 \\
\end{align} \)

Example 4

Evaluate $ \displaystyle \binom{4}{5}$.

\( \begin{align} \displaystyle
\binom{4}{5} &= \dfrac{4!}{5! \times (4-5)!} \\
&= \dfrac{4!}{5! \times (-1)!} \\
&= \text{undefined}
\end{align} \)

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume

 



Your email address will not be published.