Binomial Coefficient

Binomial Coefficient

$$\binom{n}{k}=\dfrac{n!}{k!(n-k)!}$$
Note that the binomial coefficient is sometimes written $^nC_k$ or $C^n_k$, depending on authors or geographical regions.

\( \begin{aligned}
\binom{n}{k} &= \dfrac{n!}{k!(n-k)!} \cdots (1) \\
\binom{n}{n-k} &= \dfrac{n!}{(n-k)!(n-(n-k))!} = \dfrac{n!}{(n-k)!k!} \cdots (2) \\
\therefore \binom{n}{k} &= \binom{n}{n-k} \text{by } (1) \text{ and } (2) \\
\end{aligned} \)

This means;
\( \begin{aligned}
\binom{10}{2} &= \binom{10}{8} \\
\binom{100}{1} &= \binom{100}{99} \\
\end{aligned} \)

The following binomial coefficients are undefined.

\( \displaystyle \binom{5}{7} = \dfrac{5!}{7! \times (5-7)!} \rightarrow (-2)! \) is undefined

\( \displaystyle \binom{5}{3.3} = \dfrac{5!}{3.3! \times (5-3.3)!} \rightarrow 3.3!\) is undefined

\( \displaystyle \binom{5.2}{3} = \dfrac{5.2!}{5.2! \times (5.2-3)!} \rightarrow 5.2! \) is undefined

\( \displaystyle\binom{5}{-2} = \dfrac{5!}{(-2)! \times (5-(-2))!} \rightarrow (-2)! \) is undefined

Relationship with Pascal’s triangle

\( \begin{matrix}
n=0&&&&&&1 \\
&&&&&&\displaystyle\binom{0}{0} \\
n=1&&&&&1&&1 \\
&&&&&\displaystyle \binom{1}{0}&& \displaystyle\binom{1}{1} \\
n=2&&&&1&&2&&1 \\
&&&&\displaystyle \binom{2}{0} &&\displaystyle \binom{2}{1} &&\displaystyle \binom{2}{2} \\
n=3&&&1&&3&&3&&1 \\
&&&\displaystyle \binom{3}{0} &&\displaystyle \binom{3}{1} &&\displaystyle \binom{3}{2} &&\displaystyle \binom{3}{3} \\
n=4&&1&&4&&6&&4&&1 \\
&&\displaystyle \binom{4}{0} &&\displaystyle \binom{4}{1} &&\displaystyle \binom{4}{2} &&\displaystyle \binom{4}{3} &&\displaystyle \binom{4}{4} \\
\end{matrix} \)

Example 1

Simplify $ \displaystyle \binom{n}{n-1}$.

\( \begin{align} \displaystyle
\binom{n}{n-1} &= \dfrac{n!}{(n-1)! \times 1!} \\
&= \dfrac{n \times (n-1)!}{(n-1)!} \\
&= n
\end{align} \)

Example 2

Evaluate $ \displaystyle \binom{8}{2}$.

\( \begin{align} \displaystyle
\binom{8}{2} &= \dfrac{8!}{2! \times 6!} \\
&= \dfrac{8 \times 7 \times 6!}{2 \times 1 \times 6!} \\
&= \dfrac{8 \times 7}{2} \\
&= 28 \\
\end{align} \)

Example 3

Evaluate $ \displaystyle \binom{8}{0}$.

\( \begin{align} \displaystyle
\binom{8}{0} &= \dfrac{8!}{0! \times 8!} \\
&= \dfrac{8!}{1 \times 8!} \\
&= 1 \\
\end{align} \)

Example 4

Evaluate $ \displaystyle \binom{4}{5}$.

\( \begin{align} \displaystyle
\binom{4}{5} &= \dfrac{4!}{5! \times (4-5)!} \\
&= \dfrac{4!}{5! \times (-1)!} \\
&= \text{undefined}
\end{align} \)

Absolute Value Algebra Algebraic Fractions Arithmetic Sequence Binomial Expansion Chain Rule Circle Geometry Common Difference Common Ratio Compound Angle Formula Compound Interest Cyclic Quadrilateral Differentiation Discriminant Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Inequality Integration Kinematics Logarithm Logarithmic Functions Mathematical Induction Perfect Square Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Quotient Rule Rational Functions Sequence Sketching Graphs Surds Transformation Trigonometric Functions Trigonometric Properties Volume

 



Your email address will not be published. Required fields are marked *