Binomial Coefficient

Binomial Coefficient
Binomial Coefficient

$$\binom{n}{k}=\dfrac{n!}{k!(n-k)!}$$
The binomial coefficient is sometimes written $^nC_k$ or $C^n_k$, depending on authors or geographical regions.

\( \begin{aligned}
\binom{n}{k} &= \dfrac{n!}{k!(n-k)!} \cdots (1) \\
\binom{n}{n-k} &= \dfrac{n!}{(n-k)!(n-(n-k))!} = \dfrac{n!}{(n-k)!k!} \cdots (2) \\
\therefore \binom{n}{k} &= \binom{n}{n-k} \text{by } (1) \text{ and } (2)
\end{aligned} \)

This means;
\( \begin{aligned}
\binom{10}{2} &= \binom{10}{8} \\
\binom{100}{1} &= \binom{100}{99}
\end{aligned} \)

The following binomial coefficients are undefined.

\( \displaystyle \binom{5}{7} = \dfrac{5!}{7! \times (5-7)!} \rightarrow (-2)! \) is undefined

\( \displaystyle \binom{5}{3.3} = \dfrac{5!}{3.3! \times (5-3.3)!} \rightarrow 3.3!\) is undefined

\( \displaystyle \binom{5.2}{3} = \dfrac{5.2!}{5.2! \times (5.2-3)!} \rightarrow 5.2! \) is undefined

\( \displaystyle\binom{5}{-2} = \dfrac{5!}{(-2)! \times (5-(-2))!} \rightarrow (-2)! \) is undefined

Relationship with Pascal’s triangle

\( \begin{matrix}
n=0&&&&&&1 \\
&&&&&&\displaystyle\binom{0}{0} \\
n=1&&&&&1&&1 \\
&&&&&\displaystyle \binom{1}{0}&& \displaystyle\binom{1}{1} \\
n=2&&&&1&&2&&1 \\
&&&&\displaystyle \binom{2}{0} &&\displaystyle \binom{2}{1} &&\displaystyle \binom{2}{2} \\
n=3&&&1&&3&&3&&1 \\
&&&\displaystyle \binom{3}{0} &&\displaystyle \binom{3}{1} &&\displaystyle \binom{3}{2} &&\displaystyle \binom{3}{3} \\
n=4&&1&&4&&6&&4&&1 \\
&&\displaystyle \binom{4}{0} &&\displaystyle \binom{4}{1} &&\displaystyle \binom{4}{2} &&\displaystyle \binom{4}{3} &&\displaystyle \binom{4}{4}
\end{matrix} \)

YouTube player

Example 1

Simplify $ \displaystyle \binom{n}{n-1}$.

\( \begin{align} \displaystyle
\binom{n}{n-1} &= \dfrac{n!}{(n-1)! \times 1!} \\
&= \dfrac{n \times (n-1)!}{(n-1)!} \\
&= n
\end{align} \)

Example 2

Evaluate $ \displaystyle \binom{8}{2}$.

\( \begin{align} \displaystyle
\binom{8}{2} &= \dfrac{8!}{2! \times 6!} \\
&= \dfrac{8 \times 7 \times 6!}{2 \times 1 \times 6!} \\
&= \dfrac{8 \times 7}{2} \\
&= 28
\end{align} \)

Example 3

Evaluate $ \displaystyle \binom{8}{0}$.

\( \begin{align} \displaystyle
\binom{8}{0} &= \dfrac{8!}{0! \times 8!} \\
&= \dfrac{8!}{1 \times 8!} \\
&= 1
\end{align} \)

Example 4

Evaluate $ \displaystyle \binom{4}{5}$.

\( \begin{align} \displaystyle
\binom{4}{5} &= \dfrac{4!}{5! \times (4-5)!} \\
&= \dfrac{4!}{5! \times (-1)!} \\
&= \text{undefined}
\end{align} \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *