Integrating Binomial Expansions

Integrating Binomial Expansion is used to evaluate certain series or expansions by substituting particular values after integrating binomial expansion. It is important to find a suitable number to substitute for finding the integral constant if done in an indefinite integral. If the definite integral is used, it is important to set the upper and lower limits.
$\require{color} \displaystyle$
$$(1 + x)^n = \binom{n}{0}x^0 + \binom{n}{1}x^1 + \binom{n}{2}x^2 + \cdots + \binom{n}{n}x^n$$

Question 1

Show that $\displaystyle 1-\frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots + (-1)^n\frac{1}{n+1}\binom{n}{n} = \frac{1}{n + 1}$ using indefinite integral.

\displaystyle \begin{aligned} \require{AMSsymbols} \int \bigg[\binom{n}{0}x^0 + \binom{n}{1}x^1 + \binom{n}{2}x^2 + \cdots + \binom{n}{n}x^n \bigg]dx &= \int (1 + x)^n dx \\ x + \frac{1}{2}\binom{n}{1}x^2 + \frac{1}{3}\binom{n}{2}x^3 + \cdots + \frac{1}{n+1}\binom{n}{n}x^{n+1} &= \frac{1}{n+1}(1 + x)^{n+1}+C \\ 0 + 0 + 0 + \cdots + 0 &= \frac{1}{n+1} + C &\color{green}\text{substitute } x=0 \\ C &= -\frac{1}{n+1} \\ x + \frac{1}{2}\binom{n}{1}x^2 + \frac{1}{3}\binom{n}{2}x^3 + \cdots + \frac{1}{n + 1}\binom{n}{n}x^{n + 1} &= \frac{1}{n + 1}(1 + x)^{n + 1}-\frac{1}{n + 1} \\ -1 + \frac{1}{2}\binom{n}{1}-\frac{1}{3}\binom{n}{2} + \cdots + \frac{1}{n+1}\binom{n}{n}(-1)^{n+1} &= -\frac{1}{n + 1} &\color{green}\text{substitute } x=-1 \\ 1-\frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots-\frac{1}{n+1}\binom{n}{n}(-1)^{n+1} &= \frac{1}{n + 1} &\color{green}\text{change signs} \\ 1-\frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots-\frac{1}{n+1}\binom{n}{n}(-1)^n(-1) &= \frac{1}{n + 1} \\ \therefore 1-\frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots + \frac{1}{n+1}\binom{n}{n}(-1)^n &= \frac{1}{n + 1} \end{aligned}

Question 2

Show that $\displaystyle 1-\frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots + (-1)^n\frac{1}{n+1}\binom{n}{n} = \frac{1}{n + 1}$ using definite integral.

\displaystyle \begin{aligned} \int_{0}^{-1} \bigg[\binom{n}{0}x^0 + \binom{n}{1}x^1 + \binom{n}{2}x^2 + \cdots + \binom{n}{n}x^n \bigg]dx &= \int_{0}^{-1} (1 + x)^n dx \\ \bigg[x + \frac{1}{2}\binom{n}{1}x^2 + \frac{1}{3}\binom{n}{2}x^3 + \cdots + \frac{1}{n+1}\binom{n}{n}x^{n+1}\bigg]_{0}^{-1} &= \bigg[\frac{1}{n+1}(1 + x)^{n+1}\bigg]_{0}^{-1} \\ -1 + \frac{1}{2}\binom{n}{1}-\frac{1}{3}\binom{n}{2} + \cdots + \frac{1}{n+1}\binom{n}{n}(-1)^{n+1} &= -\frac{1}{n + 1} \\ 1-\frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots-\frac{1}{n+1}\binom{n}{n}(-1)^{n+1} &= \frac{1}{n + 1} &\color{green}\text{change signs} \\ 1-\frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots-\frac{1}{n+1}\binom{n}{n}(-1)^n(-1) &= \frac{1}{n + 1} \\ \therefore 1-\frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots + \frac{1}{n+1}\binom{n}{n}(-1)^n &= \frac{1}{n + 1} \end{aligned}

âœ“ Discover more enlightening videos by visiting our YouTube channel!

Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

Trigonometry Made Easy: Integration by Parts Demystified

Integration by Parts is made of the product rule of differentiation. The derivative of $uv$ is $u’v + uv’$ and integrates both sides. \( \begin{aligned}…

Trigonometric Integration by Substitution

Substitution of Angle Parts Example 1 Find $\displaystyle \int{(2x+3) \sin (x^2+3x)}dx$. \( \begin{align} \displaystyle\text{Let } u &= x^2+3x \\\dfrac{du}{dx} &= 2x + 3 \\du &=…

High School Math for Life: Making Sense of Earnings

Salary Salary refers to the fixed amount of money that an employer pays an employee at regular intervals, typically on a monthly or biweekly basis,…

The Best Practices for Using Two-Way Tables in Probability

Welcome to a comprehensive guide on mastering probability through the lens of two-way tables. If you’ve ever found probability challenging, fear not. We’ll break it…