Integrating Binomial Expansions

Integrating Binomial Expansions

Integrating Binomial Expansion is used to evaluate certain series or expansions by substituting particular values after integrating binomial expansion. It is important to find a suitable number to substitute for finding the integral constant if done in an indefinite integral. If the definite integral is used, it is important to set the upper and lower limits.
\(\require{color} \displaystyle \)
$$ (1 + x)^n = \binom{n}{0}x^0 + \binom{n}{1}x^1 + \binom{n}{2}x^2 + \cdots + \binom{n}{n}x^n $$

YouTube player

Question 1

Show that \( \displaystyle 1-\frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots + (-1)^n\frac{1}{n+1}\binom{n}{n} = \frac{1}{n + 1} \) using indefinite integral.

\( \displaystyle \begin{aligned} \require{AMSsymbols}
\int \bigg[\binom{n}{0}x^0 + \binom{n}{1}x^1 + \binom{n}{2}x^2 + \cdots + \binom{n}{n}x^n \bigg]dx &= \int (1 + x)^n dx \\
x + \frac{1}{2}\binom{n}{1}x^2 + \frac{1}{3}\binom{n}{2}x^3 + \cdots + \frac{1}{n+1}\binom{n}{n}x^{n+1} &= \frac{1}{n+1}(1 + x)^{n+1}+C \\
0 + 0 + 0 + \cdots + 0 &= \frac{1}{n+1} + C &\color{green}\text{substitute } x=0 \\
C &= -\frac{1}{n+1} \\
x + \frac{1}{2}\binom{n}{1}x^2 + \frac{1}{3}\binom{n}{2}x^3 + \cdots + \frac{1}{n + 1}\binom{n}{n}x^{n + 1} &= \frac{1}{n + 1}(1 + x)^{n + 1}-\frac{1}{n + 1} \\
-1 + \frac{1}{2}\binom{n}{1}-\frac{1}{3}\binom{n}{2} + \cdots + \frac{1}{n+1}\binom{n}{n}(-1)^{n+1} &= -\frac{1}{n + 1} &\color{green}\text{substitute } x=-1 \\
1-\frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots-\frac{1}{n+1}\binom{n}{n}(-1)^{n+1} &= \frac{1}{n + 1} &\color{green}\text{change signs} \\
1-\frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots-\frac{1}{n+1}\binom{n}{n}(-1)^n(-1) &= \frac{1}{n + 1} \\
\therefore 1-\frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots + \frac{1}{n+1}\binom{n}{n}(-1)^n &= \frac{1}{n + 1}
\end{aligned} \)

YouTube player

Question 2

Show that \( \displaystyle 1-\frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots + (-1)^n\frac{1}{n+1}\binom{n}{n} = \frac{1}{n + 1} \) using definite integral.

\( \displaystyle \begin{aligned}
\int_{0}^{-1} \bigg[\binom{n}{0}x^0 + \binom{n}{1}x^1 + \binom{n}{2}x^2 + \cdots + \binom{n}{n}x^n \bigg]dx &= \int_{0}^{-1} (1 + x)^n dx \\
\bigg[x + \frac{1}{2}\binom{n}{1}x^2 + \frac{1}{3}\binom{n}{2}x^3 + \cdots + \frac{1}{n+1}\binom{n}{n}x^{n+1}\bigg]_{0}^{-1} &= \bigg[\frac{1}{n+1}(1 + x)^{n+1}\bigg]_{0}^{-1} \\
-1 + \frac{1}{2}\binom{n}{1}-\frac{1}{3}\binom{n}{2} + \cdots + \frac{1}{n+1}\binom{n}{n}(-1)^{n+1} &= -\frac{1}{n + 1} \\
1-\frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots-\frac{1}{n+1}\binom{n}{n}(-1)^{n+1} &= \frac{1}{n + 1} &\color{green}\text{change signs} \\
1-\frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots-\frac{1}{n+1}\binom{n}{n}(-1)^n(-1) &= \frac{1}{n + 1} \\
\therefore 1-\frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots + \frac{1}{n+1}\binom{n}{n}(-1)^n &= \frac{1}{n + 1}
\end{aligned} \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *