Proof by Differentiating Binomial Expansions

Proof by Differentiating Binomial Expansions

Part 1

Show that for all positive integers \( n \),

\( x \left[ (1+x)x^{n-1} + (1+x)^{n-2} + \cdots + (1+x)^2 + (1+x) +1 \right] = (1+x)^n-1 \).

\( \require{AMSsymbols} \begin{align} \displaystyle \text{LHS} &= x \left[(1+x)x^{n-1} + (1+x)^{n-2} + \cdots + (1+x)^2 + (1+x) +1 \right] \\ &= x \times \frac{1\left[ (1+x)^n-1 \right]}{(1+x)-1} \ \ \ \color{green}{\text{first term}=1, \text{common ratio}=1+x, \text{terms}=n} \\ &= x \times \frac{(1+x)^n-1 }{x} \\ &= (1+x)^n-1 \\ &= \text{RHS} \end{align} \)

YouTube player

Part 2

Hence show that for \( 1 \le k \le n \),

\( \begin{pmatrix} n-1 \\ k-1 \end{pmatrix} + \begin{pmatrix} n-2 \\ k-1 \end{pmatrix} + \begin{pmatrix} n-3 \\ k-1 \end{pmatrix} + \cdots + \begin{pmatrix} k-1 \\ k-1 \end{pmatrix} = \begin{pmatrix} n \\ k \end{pmatrix} \).

\( \require{AMSsymbols} \begin{align} (1+x)^n-1 &= \begin{pmatrix} n \\ 0 \end{pmatrix} + \begin{pmatrix} n \\ 1 \end{pmatrix}x + \begin{pmatrix} n \\ 2 \end{pmatrix}x^2 + \cdots + \begin{pmatrix} n \\ k \end{pmatrix} + \cdots + \begin{pmatrix} n \\ n \end{pmatrix}x^n – 1 \end{align} \)
Therefore the coefficient of \( x^k \) is \( \begin{pmatrix} n \\ k \end{pmatrix} \).
\( \require{AMSsymbols} \begin{align} \text{LHS} &= x(1+x)^{n-1} + x(1+x)^{n-2} + x(1+x)^{n-3} + \cdots + x(1+x)^{k-1} + \cdots \\ &= \begin{pmatrix} n-1 \\ 0 \end{pmatrix}x + \begin{pmatrix} n-1 \\ 1 \end{pmatrix}x^2 + \cdots + \begin{pmatrix} n-1 \\ k-1 \end{pmatrix}x^k + \cdots \\ &+ \begin{pmatrix} n-2 \\ 0 \end{pmatrix}x + \begin{pmatrix} n-2 \\ 1 \end{pmatrix}x^2 + \cdots + \begin{pmatrix} n-2 \\ k-1 \end{pmatrix}x^k + \cdots \\ &\cdots \\ &+ \begin{pmatrix} k-1 \\ 0 \end{pmatrix}x + \begin{pmatrix} k-1 \\ 1 \end{pmatrix}x^2 + \cdots + \begin{pmatrix} k-1 \\ k-1 \end{pmatrix}x^k + \cdots \\ & \cdots \end{align} \)
The coefficient of \( x^k \) is \( \begin{pmatrix} n-1 \\ k-1 \end{pmatrix} + \begin{pmatrix} n-2 \\ k-1 \end{pmatrix} + \cdots + \begin{pmatrix} k-1 \\ k-1 \end{pmatrix} \)
Equating coefficients
\( \therefore \begin{pmatrix} n-1 \\ k-1 \end{pmatrix} + \begin{pmatrix} n-2 \\ k-1 \end{pmatrix} + \cdots + \begin{pmatrix} k-1 \\ k-1 \end{pmatrix} = \begin{pmatrix} n \\ k \end{pmatrix} \)

YouTube player
YouTube player
YouTube player
YouTube player

Part 3

Show that \( n \begin{pmatrix} n-1 \\ k \end{pmatrix} = (k+1) \begin{pmatrix} n \\ k+1 \end{pmatrix} \).

\( \displaystyle \begin{align} n \begin{pmatrix} n-1 \\ k \end{pmatrix} &= \frac{n(n-1)!}{k!(n-1-k)!} \\ &= \frac{n(n-1)(n-2)(n-3) \cdots 1}{k![n-(k+1)]!} \\ &= \frac{n!}{k![n-(k+1)]!} \times \frac{k+1}{k+1} \\ &= \frac{n!(k+1)}{(k+1)![n-(k+1)]!} \\ &= (k+1) \times \frac{n!}{(k+1)![n-(k+1)]!} \\ &= \begin{pmatrix} n \\ k+1 \end{pmatrix} \end{align} \)

YouTube player

Part 4

Show the following for \( 1 \le k \lt n \).
\( (n-1) \begin{pmatrix} n-2 \\ k-1 \end{pmatrix} + (n-2) \begin{pmatrix} n-3 \\ k-1 \end{pmatrix} + \cdots + k \begin{pmatrix} k-1 \\ k-1 \end{pmatrix} = k \begin{pmatrix} n \\ k+1 \end{pmatrix} \)

\( \require{AMSsymbols} \begin{align} (1+x)^n -1 &= x \left[ (1+x)x^{n-1} + (1+x)^{n-2} + \cdots + (1+x)^2 + (1+x) +1 \right] \color{green}{\cdots \text{Part 1}} \\ \frac{d}{dx} \left[(1+x)^n-1 \right] &= n(1+x)^{n-1} \\ &= n \left[ \begin{pmatrix} n-1 \\ 0 \end{pmatrix}x^0 + \begin{pmatrix} n-1 \\ 1 \end{pmatrix}x + \begin{pmatrix} n-1 \\ 2 \end{pmatrix}x^2 + \cdots + \begin{pmatrix} n-1 \\ k \end{pmatrix}x^k + \cdots \right] \\ \text{The coefficient of } x^k &= n \begin{pmatrix} n-1 \\ k \end{pmatrix} \\ n \begin{pmatrix} n-1 \\ k \end{pmatrix} &= (k+1) \begin{pmatrix} n \\ k+1 \end{pmatrix} \color{green}{\cdots \text{Part 3}} \\ \frac{d}{dx} &x \left[ (1+x)x^{n-1} + (1+x)^{n-2} + \cdots + (1+x)^2 + (1+x) +1 \right] \\ &= x \left[ (n-1)(1+x)^{n-2} + (n-2)(1+x)^{n-3} + \cdots + 2(1+x) + 1 \right] \\ &+ (1+x)x^{n-1} + (1+x)^{n-2} + \cdots + (1+x)^2 + (1+x) +1 \\ &= \left[ (n-1)x(1+x)^{n-2} + (n-2)x(1+x)^{n-3} + \cdots + kx(1+x)^{k-1} + \cdots + 2x(1+x)+x \right] \color{red}{\cdots (1)} \\ &+ (1+x)^{n-1} + (1+x)^{n-2} + \cdots + (1+x) + 1 \color{red}{\cdots (2)} \\ \text{The coefficient of } x^k \text{ for } &(n-1)x(1+x)^{n-2} \text{ is } (n-1) \begin{pmatrix} n-2 \\ k-1 \end{pmatrix} \\ \text{The coefficient of } x^k \text{ for } &(n-2)x(1+x)^{n-3} \text{ is } (n-2) \begin{pmatrix} n-3 \\ k-1 \end{pmatrix} \\ \text{The coefficient of } x^k \text{ for } &kx(1+x)^{k-1} \text{ is } k \begin{pmatrix} k-1 \\ k-1 \end{pmatrix} \\ \text{The coefficient of } x^k \text{ in } &\color{red}{(1)} \text{ is } (n-1) \begin{pmatrix} n-2 \\ k-1 \end{pmatrix} + (n-2) \begin{pmatrix} n-3 \\ k-1 \end{pmatrix} + \cdots + k \begin{pmatrix} k-1 \\ k-1 \end{pmatrix} \\ \text{The coeffifient of } x^k \text{ in } &\color{red}{(2)} \text{ is } \begin{pmatrix} n-1 \\ k \end{pmatrix} + \begin{pmatrix} n-2 \\ k \end{pmatrix} + \cdots + \begin{pmatrix} k \\ k \end{pmatrix} \\ \text{The coefficient of } x^k \text{ is } &(n-1) \begin{pmatrix} n-2 \\ k-1 \end{pmatrix} + (n-2) \begin{pmatrix} n-3 \\ k-1 \end{pmatrix} + \cdots + k \begin{pmatrix} k-1 \\ k-1 \end{pmatrix} \\ &+ \left[ \begin{pmatrix} n-1 \\ k \end{pmatrix} + \begin{pmatrix} n-2 \\ k \end{pmatrix} + \cdots + \begin{pmatrix} k \\ k \end{pmatrix} \right] \\ &= (k+1) \begin{pmatrix} n \\ k+1 \end{pmatrix} \end{align} \\ \text{Using the result of Part 2} \) \( \begin{align} (n-1) \begin{pmatrix} n-2 \\ k-1 \end{pmatrix} + (n-2) \begin{pmatrix} n-3 \\ k-1 \end{pmatrix} + \cdots + k \begin{pmatrix} k-1 \\ k-1 \end{pmatrix} + \begin{pmatrix} n \\ k+1 \end{pmatrix} &= (k+1) \begin{pmatrix} n \\ k+1 \end{pmatrix} \\ (n-1) \begin{pmatrix} n-2 \\ k-1 \end{pmatrix} + (n-2) \begin{pmatrix} n-3 \\ k-1 \end{pmatrix} + \cdots + k \begin{pmatrix} k-1 \\ k-1 \end{pmatrix} &= (k+1) \begin{pmatrix} n \\ k+1 \end{pmatrix}-\begin{pmatrix} n \\ k+1 \end{pmatrix} \\ &= \begin{pmatrix} n \\ k+1 \end{pmatrix}(k+1-1) \\ &= k \begin{pmatrix} n \\ k+1 \end{pmatrix} \end{align} \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *