# Zero Power

Any base that has a power of zero has a value of one. it does not matter whether the base is a number or a pronumeral. If the power of zero, its value is one. We can show this by looking at the following example, which can be simplified using two different methods.

$\textbf{Method 1}$
\large \begin{align} \displaystyle 5^4 \div 5^4 &= \dfrac{5 \times 5 \times 5 \times 5}{5 \times 5 \times 5 \times 5} \\ &= \dfrac{625}{625} \\ &= 1 \end{align}

$\textbf{Method 2}$
\large \begin{align} \displaystyle 5^4 \div 5^4 &= \dfrac{5^4}{5^4} \\ &= 5^{4-4} \\ &= 5^0 \end{align}
Since the two results should be the same, $5^0$ must equal $1$.
Any base that has an index (power) of zero is equal to $1$.
$$\large a^0 = 1$$

### Example 1

Find the value of $12^0$.

$12^0 = 1$

### Example 2

Find the value of $(15a^4b^5c^6)^0$.

$(15a^4b^5c^6)^0 = 0$

### Example 3

Find the value of $5^0 + 5$.

\begin{align} \displaystyle 5^0 + 5 &= 1 + 5 \\ &= 6 \end{align}

### Example 4

Simplify $4a^2b^0$.

\begin{align} \displaystyle 4a^2b^0 &= 4a^2 \times 1 \\ &= 4a^2 \end{align}

### Example 5

Simplify $\dfrac{9x^4 \times 4x^7}{2x^6 \times 3x^5}$.

\begin{align} \displaystyle \dfrac{9x^4 \times 4x^7}{2x^6 \times 3x^5} &= \dfrac{9 \times 4}{2 \times 3} \times \dfrac{x^4 \times x^7}{x^6 \times x^5} \\ &= 6 \times x^{4+7-6 -5} \\ &= 6 \times x^0 \\ &= 6 \times 1 \\ &= 6 \end{align} ## Probability Pro: Mastering Two-Way Tables with Ease

Welcome to a comprehensive guide on mastering probability through the lens of two-way tables. If you’ve ever found probability challenging, fear not. We’ll break it…