Where Graphs Meet

Where Graphs Meet

Suppose we sketch the graphs of two functions $f(x)$ and $g(x)$ on the same axes. The $x$-coordinates of points where the graphs meet are the solutions to the equation $f(x)=g(x)$.
We can use this property to solve equations graphically, but we must make sure the graphs are drawn carefully and accurately.

Let’s take a look at the following graphs of $y=-x+k$ and $y=\dfrac{1}{x}$.

Two graphs have two intersections when $k=3$.

Two graphs have one intersection when $k=2$.

Two graphs do not intersect when $k=1$.

Two graphs do not intersect when $k=0$.

Two graphs do not intersect when $k=-1$.

Two graphs have one intersection when $k=-2$.

Two graphs have two intersections when $k=-3$.


We can now easily summarise the following from the above cases.
\begin{array}{|c|c|} \hline
k \lt -2 \text{ or } k \gt 2 & \text{two intersections} \\ \hline
k = -2 \text{ or } k = 2 & \text{one intersection} \\ \hline
-2 \lt k \lt 2 & \text{no intersection} \\ \hline
\end{array}


 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *