Trigonometric Ratios of Differences of Two Angles

Trigonometric Ratios of Differences of Two Angles Mathematics

Proof 1

\( \sin (\alpha-\beta) = \sin \alpha \cos \beta-\cos \alpha \sin \beta \)

\( \require{AMSsymbols} \begin{align} \angle RPN &= 90^{\circ}-\angle PNR \\ &= \angle RNB \\ &= \angle QON \\ &= \alpha \\ \sin(\alpha-\beta) &= \sin \angle MOP \\ &= \displaystyle \frac{MP}{OP} \\ &= \frac{MR-PR}{OP} \\ &= \frac{QN}{OP}-\frac{PR}{OP} \\ &= \frac{QN}{\color{red}{ON}} \times \frac{\color{red}{ON}}{OP}-\frac{PR}{\color{red}{PN}} \times \frac{\color{red}{PN}}{OP} \\ &= \sin \alpha \cos \beta-\cos \angle RPN \sin \beta \\ \therefore \sin (\alpha-\beta) &= \sin \alpha \cos \beta-\cos \alpha \sin \beta \end{align} \)

Proof 2

\( \cos (\alpha-\beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \)

\( \require{AMSsymbols} \begin{align} \cos (\alpha-\beta) &= \displaystyle \frac{OM}{OP} \\ &= \frac{OQ+MQ}{OP} \\ &= \frac{OQ}{OP} + \frac{RN}{OP} \\ &= \frac{OQ}{\color{red}{ON}} \times \frac{\color{red}{ON}}{OP} + \frac{RN}{\color{red}{NP}} \times \frac{\color{red}{NP}}{OP} \\ &= \cos \alpha \cos \beta + \sin \angle RPN \sin \beta \\ \therefore \cos (\alpha-\beta) &= \cos \alpha \cos \beta + \sin \alpha \sin \beta \end{align} \)

Proof 3

\( \tan (\alpha-\beta) = \displaystyle \frac{\tan \alpha-\tan \beta}{1 + \tan \alpha \tan \beta} \)

\( \require{AMSsymbols} \begin{align} \tan (\alpha-\beta) &= \displaystyle \frac{\sin (\alpha-\beta)}{\cos (\alpha-\beta)} \\ &= \frac{\sin \alpha \cos \beta-\cos \alpha \sin \beta}{\cos \alpha \cos \beta + \sin \alpha \sin \beta} \\ &= \frac{\displaystyle \frac{\sin \alpha \cos \beta}{\color{red}{\cos \alpha \cos \beta}}-\frac{\displaystyle \cos \alpha \sin \beta}{\color{red}{\cos \alpha \cos \beta}}}{\displaystyle \frac{\cos \alpha \cos \beta}{\color{red}{\cos \alpha \cos \beta}} + \frac{\displaystyle \sin \alpha \sin \beta}{\color{red}{\cos \alpha \cos \beta}}} \\ &= \frac{\displaystyle \frac{\sin \alpha}{\cos \alpha}-\frac{\sin \beta}{\cos \beta}}{1+ \displaystyle \frac{\sin \alpha}{\cos \alpha} \times \frac{\sin \beta}{\cos \beta}} \\ &= \displaystyle \frac{\tan \alpha-\tan \beta}{1 + \tan \alpha \tan \beta} \\ \therefore \tan (\alpha-\beta) &= \displaystyle \frac{\tan \alpha-\tan \beta}{1 + \tan \alpha \tan \beta} \end{align} \)

Example 1

Find the exact value of \( \sin 15^{\circ} \).

\( \require{AMSsymbols} \begin{align} \sin 15 ^{\circ} &= \sin (45^{\circ}-30^{\circ}) \\ &= \sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 30^{\circ} \\ &= \displaystyle \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \times \frac{1}{2} \\ &= \frac{\sqrt{3}-1}{2 \sqrt{2}} \end{align} \)

Example 2

Find the exact value of \( \cos 15^{\circ} \).

\( \require{AMSsymbols} \begin{align} \cos 15 ^{\circ} &= \cos (45^{\circ}-30^{\circ}) \\ &= \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ} \\ &= \displaystyle \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2} \\ &= \frac{\sqrt{3}+1}{2 \sqrt{2}} \end{align} \)

Example 3

Find the exact value of \( \tan 15^{\circ} \).

\( \require{AMSsymbols} \begin{align} \tan 15 ^{\circ} &= \tan (45^{\circ}-30^{\circ}) \\ &= \displaystyle \frac{\tan 45^{\circ}-\tan 30^{\circ}}{1 + \tan 45^{\circ} \times \tan 30 ^{\circ}} \\ &= \frac{1-\displaystyle \frac{1}{\sqrt{3}}}{1 + \displaystyle 1 \times \frac{1}{\sqrt{3}}} \\ &= \frac{\sqrt{3}-1}{\sqrt{3}+1} \\ &= \frac{(\sqrt{3}-1)^2}{3-1} \\ &= \frac{4-2\sqrt{3}}{2} \\ &= 2-\sqrt{3} \end{align} \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *