Trigonometric Ratios of Differences of Two Angles

Proof 1

\( \sin (\alpha – \beta) = \sin \alpha \cos \beta – \cos \alpha \sin \beta \)

\( \begin{align} \angle RPN &= 90^{\circ} – \angle PNR \\ &= \angle RNB \\ &= \angle QON \\ &= \alpha \\ \sin(\alpha – \beta) &= \sin \angle MOP \\ &= \displaystyle \frac{MP}{OP} \\ &= \frac{MR-PR}{OP} \\ &= \frac{QN}{OP} – \frac{PR}{OP} \\ &= \frac{QN}{\color{red}{ON}} \times \frac{\color{red}{ON}}{OP} – \frac{PR}{\color{red}{PN}} \times \frac{\color{red}{PN}}{OP} \\ &= \sin \alpha \cos \beta – \cos \angle RPN \sin \beta \\ \therefore \sin (\alpha – \beta) &= \sin \alpha \cos \beta – \cos \alpha \sin \beta \end{align} \)

Proof 2

\( \cos (\alpha – \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \)

\( \begin{align} \cos (\alpha – \beta) &= \displaystyle \frac{OM}{OP} \\ &= \frac{OQ+MQ}{OP} \\ &= \frac{OQ}{OP} + \frac{RN}{OP} \\ &= \frac{OQ}{\color{red}{ON}} \times \frac{\color{red}{ON}}{OP} + \frac{RN}{\color{red}{NP}} \times \frac{\color{red}{NP}}{OP} \\ &= \cos \alpha \cos \beta + \sin \angle RPN \sin \beta \\ \therefore \cos (\alpha – \beta) &= \cos \alpha \cos \beta + \sin \alpha \sin \beta \end{align} \)

Proof 3

\( \tan (\alpha – \beta) = \displaystyle \frac{\tan \alpha – \tan \beta}{1 + \tan \alpha \tan \beta} \)

\( \begin{align} \tan (\alpha – \beta) &= \displaystyle \frac{\sin (\alpha – \beta)}{\cos (\alpha – \beta)} \\ &= \frac{\sin \alpha \cos \beta – \cos \alpha \sin \beta}{\cos \alpha \cos \beta + \sin \alpha \sin \beta} \\ &= \frac{\displaystyle \frac{\sin \alpha \cos \beta}{\color{red}{\cos \alpha \cos \beta}} – \frac{\displaystyle \cos \alpha \sin \beta}{\color{red}{\cos \alpha \cos \beta}}}{\displaystyle \frac{\cos \alpha \cos \beta}{\color{red}{\cos \alpha \cos \beta}} + \frac{\displaystyle \sin \alpha \sin \beta}{\color{red}{\cos \alpha \cos \beta}}} \\ &= \frac{\displaystyle \frac{\sin \alpha}{\cos \alpha}-\frac{\sin \beta}{\cos \beta}}{1+ \displaystyle \frac{\sin \alpha}{\cos \alpha} \times \frac{\sin \beta}{\cos \beta}} \\ &= \displaystyle \frac{\tan \alpha – \tan \beta}{1 + \tan \alpha \tan \beta} \\ \therefore \tan (\alpha – \beta) &= \displaystyle \frac{\tan \alpha – \tan \beta}{1 + \tan \alpha \tan \beta} \end{align} \)

Example 1

Find the exact value of \( \sin 15^{\circ} \).

\( \begin{align} \sin 15 ^{\circ} &= \sin (45^{\circ} – 30^{\circ}) \\ &= \sin 45^{\circ} \cos 30^{\circ} – \cos 45^{\circ} \sin 30^{\circ} \\ &= \displaystyle \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} – \frac{1}{\sqrt{2}} \times \frac{1}{2} \\ &= \frac{\sqrt{3}-1}{2 \sqrt{2}} \end{align} \)

Example 2

Find the exact value of \( \cos 15^{\circ} \).

\( \begin{align} \cos 15 ^{\circ} &= \cos (45^{\circ} – 30^{\circ}) \\ &= \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ} \\ &= \displaystyle \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2} \\ &= \frac{\sqrt{3}+1}{2 \sqrt{2}} \end{align} \)

Example 3

Find the exact value of \( \tan 15^{\circ} \).

\( \begin{align} \tan 15 ^{\circ} &= \tan (45^{\circ} – 30^{\circ}) \\ &= \displaystyle \frac{\tan 45^{\circ} – \tan 30^{\circ}}{1 + \tan 45^{\circ} \times \tan 30 ^{\circ}} \\ &= \frac{1 – \displaystyle \frac{1}{\sqrt{3}}}{1 + \displaystyle 1 \times \frac{1}{\sqrt{3}}} \\ &= \frac{\sqrt{3}-1}{\sqrt{3}+1} \\ &= \frac{(\sqrt{3}-1)^2}{3-1} \\ &= \frac{4-2\sqrt{3}}{2} \\ &= 2-\sqrt{3} \end{align} \)

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Divisibility Proof Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume

 



Your email address will not be published. Required fields are marked *