Trigonometric Proof using Compound Angle Formula

There are many areas to apply the compound angle formulas, and trigonometric proof using the compound angle formula is one of them.
$$ \begin{aligned} \require{AMSsymbols} \require{color}
\sin (x + y) &= \sin x \cos y + \sin y \cos x &\color{green} (1) \\
\sin (x-y) &= \sin x \cos y-\sin y \cos x &\color{green} (2)
\end{aligned} $$
Using Compound Angle Formula, we can abstract two similar formulas using these identities for Trigonometric Proof.
\( \begin{aligned}
\text{Let } A &= x + y \text{ and } B = x-y \\
A + B &= 2x \\
x &= \frac{A + B}{2} \\
A-B &= 2y \\
y &= \frac{A-B}{2} \\
\sin (x + y) + \sin (x-y) &= 2\sin x \cos y &\color{green} (1) + (2) \\
\sin A + \sin B &= 2 \sin \frac{A + B}{2} \cos \frac{A-B}{2} &\color{green} (3) \\
\sin (x + y)-\sin (x-y) &= 2\sin y \cos x &\color{green} (1)-(2) \\
\sin A-\sin B &= 2 \sin \frac{A-B}{2} \cos \frac{A + B}{2} &\color{green} (4)
\end{aligned} \)
The following Example Question covers one of the popular ways to prove trigonometric identities.
Let’s have a look at it now!
Example
Prove \(\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C\), if \(A + B + C = \pi\).
\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
\text{LHS} &= \sin 2A + \sin 2B + \sin 2C \\
&= 2 \sin (A + B) \cos (A-B) + \sin 2C &\color{green} \text{apply (3)} \\
&= 2 \sin (A + B) \cos (A-B) + 2 \sin C \cos C &\color{green} \text{double angle formula} \\
&= 2 \sin (\pi-C) \cos(A-B) + 2 \sin C \cos (\pi-A-B) &\color{green} A + B + C = \pi \\
&= 2 \sin C \cos(A-B) + 2 \sin C \cos (\pi-A-B) &\color{green} \sin (\pi-\theta) = \sin \theta \\
&= 2 \sin C \cos(A-B)-2 \sin C \cos (A + B) &\color{green} \cos (\pi-\theta) = -\cos \theta \\
&= 2 \sin C \big[\cos (A-B)-\cos(A + B)\big] &\color{green} \text{common factor of } 2 \sin C \\
&= 2 \sin C \big[(\cos A \cos B + \sin A \sin B)-(\cos A \cos B-\sin A \sin B)\big] &\color{green} \text{compound angle formulas} \\
&= 2 \sin C (\cos A \cos B + \sin A \sin B-\cos A \cos B + \sin A \sin B) \\
&= 2 \sin C (2 \sin A \sin B) \\
&= 4 \sin C \sin A \sin B \\
&= \text{RHS}
\end{aligned} \)
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume
Responses