Trigonometric Equation involving Double Angle and Compound Angle Formula

Solve \( \sin x + \sin 2x + \sin 3x = 0 \) for \( 0 \le x \le 2 \pi \).

Part 1

Show that \( \sin 3x = 3 \sin x – 4 \sin^3 x \).

\( \begin{align} \sin 3x &= \sin (x + 2x) \\ &= \sin x \cos 2x + \cos x \sin 2x &\color{green}{\text{Compound Angle Formula}} \\ &= \sin x (1 – 2 \sin^2 x) + \cos x (2 \sin x \cos x) &\color{green}{\text{Double Angle Formula}} \\ &= \sin x – 2 \sin^3 x + 2 \sin x \cos^2 x \\ &= \sin x – 2 \sin^3 x + 2 \sin x (1 – \sin^2 x) &\color{green}{\sin^2 x + \cos^2 x = 1} \\ &= \sin x – 2 \sin^3 x + 2 \sin x – 2 \sin^3 x \\ &= 3 \sin x – 4 \sin^3 x \end{align} \)

Part 2

Show that \( \sin x + \sin 3x = 2 \sin 2x \cos x \).

\( \begin{align} \sin x + \sin 3x &= \sin x + 3 \sin x – 4 \sin^3 x &\color{green}{\text{Result of Part 1}} \\ &= 4 \sin x – 4 \sin^3 x \\ &= 4 \sin x (1 – \sin^2 x) \\ &= 4 \sin x \cos^2 x &\color{green}{\sin^2 x + \cos^2 x = 1} \\ &=2 \times 2 \sin x \cos x \times \cos x \\ &= 2 \sin 2x \cos x &\color{green}{\text{Compound Angle Formula}} \end{align} \)

Part 3

Solve \( \sin x + \sin 2x + \sin 3x = 0 \) for \( 0 \le x \le 2 \pi \).

\( \begin{align} \sin x + \sin 2x + \sin 3x &= 0 \\ (\sin x + \sin 3x) +\sin 2x &=0 \\ 2 \sin 2x \cos x + \sin 2x &= 0 &\color{green}{\text{Result of Part 2}} \\ \sin 2x (2 \cos x + 1) &= 0 \\ \sin 2x &= 0 \text{ or } 2 \cos x + 1 = 0 \\ 2x &= 0, \pi, 2 \pi, 3 \pi, 4 \pi, 5 \pi, \cdots &\color{green}{\text{for } \sin 2x =0} \\ x &= 0, \displaystyle \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi, \frac{5 \pi}{2}, \cdots \\ &= 0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi &\color{green}{\text{for } 0 \le x \le 2 \pi} \\ x &= \pi – \frac{\pi}{3}, \pi + \frac{\pi}{3}, 3 \pi – \frac{\pi}{3}, 3 \pi + \frac{\pi}{3}, \cdots &\color{green}{\text{for } \cos x = -\frac{1}{2} } \\ &= \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{8 \pi}{3}, \frac{10 \pi}{3}, \cdots \\ &= \frac{2 \pi}{3}, \frac{4 \pi}{3} &\color{green}{\text{for } 0 \le x \le 2 \pi} \\ \require{AMSsymbols} \therefore x &= 0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, \frac{3 \pi}{2}, \frac{4 \pi}{3}, 2 \pi \end{align} \)

Absolute Value Algebra Arithmetic Mean Arithmetic Sequence Binomial Expansion Binomial Theorem Chain Rule Circle Geometry Combinations Common Difference Common Ratio Compound Angle Formula Compound Interest Cyclic Quadrilateral Differentiation Discriminant Double-Angle Formula Equation Exponent Exponential Function Factorials Functions Geometric Mean Geometric Sequence Geometric Series Inequality Integration Kinematics Logarithm Logarithmic Functions Mathematical Induction Probability Product Rule Proof Quadratic Quotient Rule Rational Functions Sequence Sketching Graphs Surds Transformation Trigonometric Functions Trigonometric Properties VCE Mathematics Volume

 



Your email address will not be published. Required fields are marked *