The Sign of One


Make the following numbers using FOUR 1s using any mathematics operators and/or symbols, such as $\dfrac{x}{y}$, $\sqrt{x}$, decimal dots, $+$, $-$, $\times$, $\div$, $($ $)$, etc by the Sign of One.

Click the numbers below to see the answers.

The first one is done for you.

$1$

$1 = 1 \times 1 \times 1 \times 1$

$2$

$2 = (1+1) \times 1 \times 1$

$3$

$3 = (1+1+1) \times 1$

$4$

$4 = 1+1+1+1$

$5$


$5 = \dfrac{1}{.1} \div (1+1)$
Note that the dot is the decimal point, such as $.1 = 0.1$

$6$


\( \begin{align} \displaystyle
6 &= (1+1+1)! \times 1 \\
&\text{Note that the exclamation mark ! means factorial, such as } 3! = 3 \times 2 \times 1 = 24 \\
&= \sqrt{\dfrac{1}{.\dot{1}}} + \sqrt{\dfrac{1}{.\dot{1}}} \\
&\text{Note that } .\dot{1} = .111 \cdots \text{ recurring decimals.} \\
&= \Bigg(\sqrt{\dfrac{1}{.\dot{1}}}\Bigg)! \\
\end{align} \)

$7$

$7 = (1+1+1)! + 1$

$8$

$8 = \dfrac{1}{.\dot{1}} – 1 \times 1$

$9$

$9 = \dfrac{1}{.\dot{1}} + 1 – 1$

$10$

$10 = \dfrac{1}{.\dot{1}} + 1 \times 1$

$11$

$11 = \dfrac{1}{.\dot{1}} + 1 + 1$

$12$

$12 = 11 + 1 \times 1$

$13$

$13 = 11 + 1 + 1$

$14$

$14 = 11 + \sqrt{\dfrac{1}{.\dot{1}}}$

$15$

$15 = \dfrac{1}{.\dot{1}} + \Bigg(\sqrt{\dfrac{1}{.\dot{1}}}\Bigg)!$

$16$

$16 = \dfrac{1}{.1} + \Bigg(\sqrt{\dfrac{1}{.\dot{1}}}\Bigg)!$

$17$

$17 = 11 + \Bigg(\sqrt{\dfrac{1}{.\dot{1}}}\Bigg)!$

$18$

$18 = \dfrac{1}{.\dot{1}} + \dfrac{1}{.\dot{1}}$

$19$

$19 = \dfrac{1}{.1} + \dfrac{1}{.\dot{1}}$

$20$

$20 = \dfrac{1}{.1} + \dfrac{1}{.1}$

$21$

$21 = \dfrac{1}{.1} + 11$

$22$

$22 = 11 + 11$

$23$

$23 = \Bigg(\sqrt{\dfrac{1}{.\dot{1}}}+1\Bigg)!-1$

$24$

$24 = \Bigg(\sqrt{\dfrac{1}{.\dot{1}}}+1\Bigg)!\times 1$

$25$

$25 = \Bigg(\sqrt{\dfrac{1}{.\dot{1}}}+1\Bigg)!+1$

$26$


\( \begin{align} \displaystyle
26 &= \Biggl\lceil \sqrt{\dfrac{1}{.1}} \Biggl\rceil ! + 1 + 1 \\
&= \Bigl\lceil \sqrt{10} \Bigl\rceil ! + 2 \\
&= \bigl\lceil 3.162 \cdots \bigr\rceil ! + 2 \\
&= 4! + 2 \\
&= 4 \times 3 \times 2 \times 1 + 2 \\
&= 24 + 2 \\
&= 26 \text{ Boom!}\\
\text{Note that:} \\
\bigl\lfloor x \bigr\rfloor &= \text{the greatest integer less than or equal to } x \text{ (floor)} \\
\bigl\lfloor 3.4 \bigr\rfloor &= 3 \\
\bigl\lceil x \bigr\rceil &= \text{the smallest integer greater than or equal to } x \text{ (ceiling)} \\
\bigl\lceil 3.4 \bigr\rceil &= 4 \\
\end{align} \)

$27$


\( \begin{align} \displaystyle
27 &= \Biggl\lceil \sqrt{\dfrac{1}{.1}} \Biggl\rceil ! + \Biggl\lfloor \sqrt{\dfrac{1}{.1}} \Biggl\rfloor \\
&= \Bigl\lceil \sqrt{10} \Bigl\rceil ! + \Bigl\lfloor \sqrt{10} \Bigl\rfloor \\
&= \bigl\lceil 3.162 \cdots \bigl\rceil ! + \bigl\lfloor 3.162 \cdots \bigl\rfloor \\
&= 4! + 3 \\
&= 4 \times 3 \times 2 \times 1 + 3 \\
&= 24 + 3 \\
&= 27 \\
\end{align} \)

$28$


\( \begin{align} \displaystyle
28 &= \Biggl\lceil \sqrt{\dfrac{1}{.1}} \Biggl\rceil ! + \Biggl\lceil \sqrt{\dfrac{1}{.1}} \Biggl\rceil \\
&= \bigl\lceil 3.162 \cdots \bigl\rceil ! + \bigl\lceil 3.162 \cdots \bigl\rceil \\
&= 4! + 4 \\
&= 4 \times 3 \times 2 \times 1 + 4 \\
&= 24 + 4 \\
&= 28 \\
\end{align} \)

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published. Required fields are marked *