# Surd Equations Reducible to Quadratics

Surd Equations Reducible to Quadratic for Math Algebra is done squaring both sides for removing surds and radical expressions. Make sure to check whether the solutions are correct by substituting them into the original surd equations.

### Question 1

Solve $x = \sqrt{x+2}$.

\begin{aligned} \displaystyle \require{AMSsymbols} \require{color} x^2 &= x+2 &\color{red} \text{square both sides} \\ x^2-x-2 &= 0 \\ (x-2)(x+1) &= 0 \\ x = 2 &\text{ or } x = -1 \\ \color{green} \text{Check } x=2 \\ 2 &= \sqrt{2+2} \\ &= \sqrt{4} \\ &= 2 \\ 2 &= 2 \\ \color{green} \text{Check } x=-1 \\ -1 &= \sqrt{-1+2} \\ &= \sqrt{1} \\ &= 1 \\ -1 &\ne 1 \\ \therefore x &= 2 &\color{red} \text{only one solution} \end{aligned}

### Question 2

Solve $3x = \sqrt{x^2+32}$.

\begin{aligned} \displaystyle \require{AMSsymbols} \require{color} 9x^2 &= x^2 + 32 &\color{red} \text{square both sides} \\ 8x^2 &= 32 \\ x^2 &= 4 \\ x = 2 &\text{ or } x = -2 \\ \color{green} \text{Check } x=2 \\ 3 \times 2 &= \sqrt{2^2 + 32} \\ 6 &= \sqrt{36} \\ 6 &= 6 \\ \color{green} \text{Check } x=-2 \\ 3 \times-2 &= \sqrt{(-2)^2 + 32} \\ -6 &= \sqrt{36} \\ -6 &\ne 6 \\ \therefore x &= 6 &\color{red} \text{only one solution} \end{aligned}

### Question 3

Solve $x + 2\sqrt{x+1} = 7$.

\begin{aligned} \displaystyle \require{AMSsymbols} \require{color} 2 \sqrt{x+1} &= 7-x \\ 4(x+1) &= (7-x)^2 &\color{red} \text{square both sides} \\ 4x+4 &= 49-14x+x^2 \\ x^2-18x + 45 &= 0 \\ (x-15)(x-3) &= 0 \\ \therefore x &= 15 \text{ or } 3 \end{aligned}

### Question 4

Solve $\sqrt{2x+3}-\sqrt{x-2} = 2$.

\begin{aligned} \displaystyle \require{AMSsymbols} \require{color} \left(\sqrt{2x+3}-\sqrt{x-2}\right)^2 &= 2^2 &\color{red} \text{square both sides} \\ 2x+3-2\sqrt{(2x+3)(x-2)} + x-2 &= 4 \\ – 2\sqrt{(2x+3)(x-2)} &= -3x+3 \\ 4(2x^2-x-6) &= 9x^2-18x + 9 &\color{red} \text{square both sides again} \\ 8x^2-4x-24 &= 9x^2-18x + 9 \\ x^2-14x + 33 &= 0 \\ (x-11)(x-3) &= 0 \\ \therefore x &=11 \text{ or } 3 \end{aligned}

Discover more enlightening videos by visiting our YouTube channel!

## Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

## High School Math for Life: Making Sense of Earnings

Salary Salary refers to the fixed amount of money that an employer pays an employee at regular intervals, typically on a monthly or biweekly basis,…

## The Best Practices for Using Two-Way Tables in Probability

Welcome to a comprehensive guide on mastering probability through the lens of two-way tables. If you’ve ever found probability challenging, fear not. We’ll break it…

Solving radical equations are required to isolate the radicals or surds to one side of the equations. Then square both sides. Here we have two…

## Binomial Expansions

The sum $a+b$ is called a binomial as it contains two terms.Any expression of the form $(a+b)^n$ is called a power of a binomial. All…