Surd Equations Reducible to Quadratics

Surd Equations Reducible to Quadratics

Surd Equations Reducible to Quadratic for Math Algebra is done squaring both sides for removing surds and radical expressions. Make sure to check whether the solutions are correct by substituting them into the original surd equations.

Question 1

Solve \( x = \sqrt{x+2} \).

\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
x^2 &= x+2 &\color{red} \text{square both sides} \\
x^2-x-2 &= 0 \\
(x-2)(x+1) &= 0 \\
x = 2 &\text{ or } x = -1 \\
\color{green} \text{Check } x=2 \\
2 &= \sqrt{2+2} \\
&= \sqrt{4} \\
&= 2 \\
2 &= 2 \\
\color{green} \text{Check } x=-1 \\
-1 &= \sqrt{-1+2} \\
&= \sqrt{1} \\
&= 1 \\
-1 &\ne 1 \\
\therefore x &= 2 &\color{red} \text{only one solution}
\end{aligned} \)

Question 2

Solve \( 3x = \sqrt{x^2+32} \).

\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
9x^2 &= x^2 + 32 &\color{red} \text{square both sides} \\
8x^2 &= 32 \\
x^2 &= 4 \\
x = 2 &\text{ or } x = -2 \\
\color{green} \text{Check } x=2 \\
3 \times 2 &= \sqrt{2^2 + 32} \\
6 &= \sqrt{36} \\
6 &= 6 \\
\color{green} \text{Check } x=-2 \\
3 \times-2 &= \sqrt{(-2)^2 + 32} \\
-6 &= \sqrt{36} \\
-6 &\ne 6 \\
\therefore x &= 6 &\color{red} \text{only one solution}
\end{aligned} \)

Question 3

Solve \( x + 2\sqrt{x+1} = 7 \).

\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
2 \sqrt{x+1} &= 7-x \\
4(x+1) &= (7-x)^2 &\color{red} \text{square both sides} \\
4x+4 &= 49-14x+x^2 \\
x^2-18x + 45 &= 0 \\
(x-15)(x-3) &= 0 \\
\therefore x &= 15 \text{ or } 3
\end{aligned} \)

Question 4

Solve \( \sqrt{2x+3}-\sqrt{x-2} = 2 \).

\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
\left(\sqrt{2x+3}-\sqrt{x-2}\right)^2 &= 2^2 &\color{red} \text{square both sides} \\
2x+3-2\sqrt{(2x+3)(x-2)} + x-2 &= 4 \\
– 2\sqrt{(2x+3)(x-2)} &= -3x+3 \\
4(2x^2-x-6) &= 9x^2-18x + 9 &\color{red} \text{square both sides again} \\
8x^2-4x-24 &= 9x^2-18x + 9 \\
x^2-14x + 33 &= 0 \\
(x-11)(x-3) &= 0 \\
\therefore x &=11 \text{ or } 3
\end{aligned} \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *