Sum of an Infinite Geometric Series

To examine the sum of all the terms of an infinite geometric sequence, we need to consider $S_n = \dfrac{u_1(1-r^n)}{1-r}$ when $n$ gets very large.

Sum to Infinity, Limiting Sum

If $\left|r\right|>1$, the series is said to be divergent and the sum infinitely large.
For instance, when $r=2$ and $u_1=1$;
$S_\infty=1+2+4+8+\cdots$ is infinitely large.

If $\left|r\right|<1$, or $-1 \lt r \lt 1$, then as $n$ becomes very large, $r^n$ approaches $0$.
For instance, when $r=\dfrac{1}{2}$ and $u_1=1$;
$S_\infty=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\cdots = 2$.

$$S_\infty=\dfrac{u_1}{1-r}$$
We call this the limiting sum of the series.

This result can be used to find the value of recurring decimals.
Let’s take a look at $0.\overline{7}$ to see how to convert it to a fraction.

\( \begin{align} \displaystyle
0.\overline{7} &= 0.7 + 0.07 + 0.007 + 0.0007 + \cdots \\
&= 0.7 + 0.7(0.1) + 0.7(0.1)^2 + 0.7(0.1)^3 + \cdots \\
&= \dfrac{0.7}{1-0.1} \\
&= \dfrac{0.7}{0.9} \\
&= \dfrac{7}{9} \\
\end{align} \)

Example 1

Write $0.\overline{12}$ as a rational number.

\( \begin{align} \displaystyle
0.\overline{12} &= 0.12 + 0.0012 + 0.000012 + \cdots \\
&= 0.12 + 0.12(0.1)^2 + 0.12(0.1)^4 + \cdots \\
&= \dfrac{0.12}{1-0.1^2} \\
&= \dfrac{0.12}{0.99} \\
&= \dfrac{4}{33} \\
\end{align} \)

Example 2

Write $0.1 \overline{2}$ as a rational number.

\( \begin{align} \displaystyle
0.1 \overline{2} &= 0.1222 + \cdots \\
&= 0.1 + 0.02 + 0.002 + 0.0002 + \cdots \\
&= 0.1 + 0.02 + 0.02(0.1) + 0.02(0.1)^2 + \cdots \\
&= 0.1 + \dfrac{0.02}{1-0.1} \\
&= 0.1 + \dfrac{0.02}{0.9} \\
&= \dfrac{11}{90} \\
\end{align} \)

Example 3

Write $1.2 \overline{345}$ as a rational number.

\( \begin{align} \displaystyle 1.2 \overline{345} &= 1.2345345345 + \cdots \\ &= 1.2 + 0.0345 + 0.0000345 + 0.0000000345 + \cdots \\ &= 1.2 + 0.0345 + 0.0345(0.001)+ 0.0345(0.001)^2 + \cdots \\ &= 1.2 + \dfrac{0.0345}{1-0.001} \\ &= 1 \dfrac{731}{3330} \end{align} \)

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Divisibility Proof Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume

 



Your email address will not be published. Required fields are marked *