# Sum of an Infinite Geometric Series

To examine the sum of all the terms of an infinite geometric sequence, we need to consider $S_n = \dfrac{u_1(1-r^n)}{1-r}$ when $n$ gets very large.

If $\left|r\right|>1$, the series is said to be divergent and the sum infinitely large.
For instance, when $r=2$ and $u_1=1$;
$S_\infty=1+2+4+8+\cdots$ is infinitely large.

If $\left|r\right|<1$, or $-1 \lt r \lt 1$, then as $n$ becomes very large, $r^n$ approaches $0$.
For instance, when $r=\dfrac{1}{2}$ and $u_1=1$;
$S_\infty=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\cdots = 2$.

$$S_\infty=\dfrac{u_1}{1-r}$$
We call this the limiting sum of the series.

This result can be used to find the value of recurring decimals.
Let’s take a look at $0.\overline{7}$ to see how to convert it to a fraction.

\begin{align} \displaystyle 0.\overline{7} &= 0.7 + 0.07 + 0.007 + 0.0007 + \cdots \\ &= 0.7 + 0.7(0.1) + 0.7(0.1)^2 + 0.7(0.1)^3 + \cdots \\ &= \dfrac{0.7}{1-0.1} \\ &= \dfrac{0.7}{0.9} \\ &= \dfrac{7}{9} \\ \end{align}

## Example 1

Write $0.\overline{12}$ as a rational number.

\begin{align} \displaystyle 0.\overline{12} &= 0.12 + 0.0012 + 0.000012 + \cdots \\ &= 0.12 + 0.12(0.1)^2 + 0.12(0.1)^4 + \cdots \\ &= \dfrac{0.12}{1-0.1^2} \\ &= \dfrac{0.12}{0.99} \\ &= \dfrac{4}{33} \end{align}

## Example 2

Write $0.1 \overline{2}$ as a rational number.

\begin{align} \displaystyle 0.1 \overline{2} &= 0.1222 + \cdots \\ &= 0.1 + 0.02 + 0.002 + 0.0002 + \cdots \\ &= 0.1 + 0.02 + 0.02(0.1) + 0.02(0.1)^2 + \cdots \\ &= 0.1 + \dfrac{0.02}{1-0.1} \\ &= 0.1 + \dfrac{0.02}{0.9} \\ &= \dfrac{11}{90} \end{align}

## Example 3

Write $1.2 \overline{345}$ as a rational number.

\begin{align} \displaystyle 1.2 \overline{345} &= 1.2345345345 + \cdots \\ &= 1.2 + 0.0345 + 0.0000345 + 0.0000000345 + \cdots \\ &= 1.2 + 0.0345 + 0.0345(0.001)+ 0.0345(0.001)^2 + \cdots \\ &= 1.2 + \dfrac{0.0345}{1-0.001} \\ &= 1 \dfrac{731}{3330} \end{align}

## Example 4

$\displaystyle S=\sum^{\infty}_{n=1} \frac{3}{5^n}$

(a)     Determine if the series $\mathcal{S}$ is convergent or divergent. State reason(s). Note the starting value of $n$ is $1$.

\displaystyle \begin{align} \text{the first term} &= \frac{3}{5} \\ \text{common ratio} &= \frac{1}{5} \\ \therefore \mathcal{S} \text{ is convergent as } &-1 \lt \text{common ratio} \lt 1 \end{align}

(b)     If convergent, find the value of the series.

\displaystyle \begin{align} \mathcal{S}_{\infty} &= \frac{\text{first term}}{1-\text{common ratio}} \\ &= \frac\frac{3}{5}}{1-\displaystyle \frac{1}{5}} \\ &= \frac\frac{3}{5}}\frac{4}{5}} \\ &= \frac{3}{4} \end{align} ## Simplified Method for Calculating First Term and Common Ratio in Infinite Geometric Series

Hello, math enthusiasts! Today, we’re delving into the captivating realm of infinite geometric series and discovering how to easily determine the “First Term” and the…

## Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

## Probability Pro: Mastering Two-Way Tables with Ease

Welcome to a comprehensive guide on mastering probability through the lens of two-way tables. If you’ve ever found probability challenging, fear not. We’ll break it…