Sum of an Infinite Geometric Series

To examine the sum of all the terms of an infinite geometric sequence, we need to consider $S_n = \dfrac{u_1(1-r^n)}{1-r}$ when $n$ gets very large.
If $\left|r\right|>1$, the series is said to be divergent and the sum infinitely large.
For instance, when $r=2$ and $u_1=1$;
$S_\infty=1+2+4+8+\cdots$ is infinitely large.
If $\left|r\right|<1$, or $-1 \lt r \lt 1$, then as $n$ becomes very large, $r^n$ approaches $0$.
For instance, when $r=\dfrac{1}{2}$ and $u_1=1$;
$S_\infty=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\cdots = 2$.
$$S_\infty=\dfrac{u_1}{1-r}$$
We call this the limiting sum of the series.
This result can be used to find the value of recurring decimals.
Let’s take a look at $0.\overline{7}$ to see how to convert it to a fraction.
\( \begin{align} \displaystyle
0.\overline{7} &= 0.7 + 0.07 + 0.007 + 0.0007 + \cdots \\
&= 0.7 + 0.7(0.1) + 0.7(0.1)^2 + 0.7(0.1)^3 + \cdots \\
&= \dfrac{0.7}{1-0.1} \\
&= \dfrac{0.7}{0.9} \\
&= \dfrac{7}{9} \\
\end{align} \)
Example 1
Write $0.\overline{12}$ as a rational number.
\( \begin{align} \displaystyle
0.\overline{12} &= 0.12 + 0.0012 + 0.000012 + \cdots \\
&= 0.12 + 0.12(0.1)^2 + 0.12(0.1)^4 + \cdots \\
&= \dfrac{0.12}{1-0.1^2} \\
&= \dfrac{0.12}{0.99} \\
&= \dfrac{4}{33}
\end{align} \)
Example 2
Write $0.1 \overline{2}$ as a rational number.
\( \begin{align} \displaystyle
0.1 \overline{2} &= 0.1222 + \cdots \\
&= 0.1 + 0.02 + 0.002 + 0.0002 + \cdots \\
&= 0.1 + 0.02 + 0.02(0.1) + 0.02(0.1)^2 + \cdots \\
&= 0.1 + \dfrac{0.02}{1-0.1} \\
&= 0.1 + \dfrac{0.02}{0.9} \\
&= \dfrac{11}{90}
\end{align} \)
Example 3
Write $1.2 \overline{345}$ as a rational number.
\( \begin{align} \displaystyle 1.2 \overline{345} &= 1.2345345345 + \cdots \\ &= 1.2 + 0.0345 + 0.0000345 + 0.0000000345 + \cdots \\ &= 1.2 + 0.0345 + 0.0345(0.001)+ 0.0345(0.001)^2 + \cdots \\ &= 1.2 + \dfrac{0.0345}{1-0.001} \\ &= 1 \dfrac{731}{3330} \end{align} \)
Example 4
\( \displaystyle S=\sum^{\infty}_{n=1} \frac{3}{5^n} \)
(a) Determine if the series \( \mathcal{S} \) is convergent or divergent. State reason(s). Note the starting value of \( n \) is \( 1 \).
\( \displaystyle \begin{align} \text{the first term} &= \frac{3}{5} \\ \text{common ratio} &= \frac{1}{5} \\ \therefore \mathcal{S} \text{ is convergent as } &-1 \lt \text{common ratio} \lt 1 \end{align} \)
(b) If convergent, find the value of the series.
\( \displaystyle \begin{align} \mathcal{S}_{\infty} &= \frac{\text{first term}}{1-\text{common ratio}} \\ &= \frac{\displaystyle \frac{3}{5}}{1-\displaystyle \frac{1}{5}} \\ &= \frac{\displaystyle \frac{3}{5}}{\displaystyle \frac{4}{5}} \\ &= \frac{3}{4} \end{align} \)
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume
Responses