# Sum of an Infinite Geometric Series

To examine the sum of all the terms of an infinite geometric sequence, we need to consider $S_n = \dfrac{u_1(1-r^n)}{1-r}$ when $n$ gets very large.

If $\left|r\right|>1$, the series is said to be divergent and the sum infinitely large.
For instance, when $r=2$ and $u_1=1$;
$S_\infty=1+2+4+8+\cdots$ is infinitely large.

If $\left|r\right|<1$, or $-1 \lt r \lt 1$, then as $n$ becomes very large, $r^n$ approaches $0$.
For instance, when $r=\dfrac{1}{2}$ and $u_1=1$;
$S_\infty=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\cdots = 2$.

$$S_\infty=\dfrac{u_1}{1-r}$$
We call this the limiting sum of the series.

This result can be used to find the value of recurring decimals.
Let’s take a look at $0.\overline{7}$ to see how to convert it to a fraction.

\begin{align} \displaystyle 0.\overline{7} &= 0.7 + 0.07 + 0.007 + 0.0007 + \cdots \\ &= 0.7 + 0.7(0.1) + 0.7(0.1)^2 + 0.7(0.1)^3 + \cdots \\ &= \dfrac{0.7}{1-0.1} \\ &= \dfrac{0.7}{0.9} \\ &= \dfrac{7}{9} \\ \end{align}

### Example 1

Write $0.\overline{12}$ as a rational number.

\begin{align} \displaystyle 0.\overline{12} &= 0.12 + 0.0012 + 0.000012 + \cdots \\ &= 0.12 + 0.12(0.1)^2 + 0.12(0.1)^4 + \cdots \\ &= \dfrac{0.12}{1-0.1^2} \\ &= \dfrac{0.12}{0.99} \\ &= \dfrac{4}{33} \end{align}

### Example 2

Write $0.1 \overline{2}$ as a rational number.

\begin{align} \displaystyle 0.1 \overline{2} &= 0.1222 + \cdots \\ &= 0.1 + 0.02 + 0.002 + 0.0002 + \cdots \\ &= 0.1 + 0.02 + 0.02(0.1) + 0.02(0.1)^2 + \cdots \\ &= 0.1 + \dfrac{0.02}{1-0.1} \\ &= 0.1 + \dfrac{0.02}{0.9} \\ &= \dfrac{11}{90} \end{align}

### Example 3

Write $1.2 \overline{345}$ as a rational number.

\begin{align} \displaystyle 1.2 \overline{345} &= 1.2345345345 + \cdots \\ &= 1.2 + 0.0345 + 0.0000345 + 0.0000000345 + \cdots \\ &= 1.2 + 0.0345 + 0.0345(0.001)+ 0.0345(0.001)^2 + \cdots \\ &= 1.2 + \dfrac{0.0345}{1-0.001} \\ &= 1 \dfrac{731}{3330} \end{align}

### Example 4

$\displaystyle S=\sum^{\infty}_{n=1} \frac{3}{5^n}$

(a)     Determine if the series $\mathcal{S}$ is convergent or divergent. State reason(s). Note the starting value of $n$ is $1$.

\displaystyle \begin{align} \text{the first term} &= \frac{3}{5} \\ \text{common ratio} &= \frac{1}{5} \\ \therefore \mathcal{S} \text{ is convergent as } &-1 \lt \text{common ratio} \lt 1 \end{align}

(b)     If convergent, find the value of the series.

\displaystyle \begin{align} \mathcal{S}_{\infty} &= \frac{\text{first term}}{1-\text{common ratio}} \\ &= \frac{\displaystyle \frac{3}{5}}{1-\displaystyle \frac{1}{5}} \\ &= \frac{\displaystyle \frac{3}{5}}{\displaystyle \frac{4}{5}} \\ &= \frac{3}{4} \end{align}

âœ“ Discover more enlightening videos by visiting our YouTube channel!

## Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

## The Best Practices for Using Two-Way Tables in Probability

Welcome to a comprehensive guide on mastering probability through the lens of two-way tables. If you’ve ever found probability challenging, fear not. We’ll break it…

## High School Math for Life: Making Sense of Earnings

Salary Salary refers to the fixed amount of money that an employer pays an employee at regular intervals, typically on a monthly or biweekly basis,…

## Binomial Expansions

The sum $a+b$ is called a binomial as it contains two terms.Any expression of the form $(a+b)^n$ is called a power of a binomial. All…

## Induction Made Simple: The Ultimate Guide

“Induction Made Simple: The Ultimate Guide” is your gateway to mastering the art of mathematical induction, demystifying a powerful tool in mathematics. This ultimate guide…