# Sigma Notation | Summation Notation | Sum of an Arithmetic Series

Another mathematical device widely used in sequences and series is $\textit{sigma notation}$. The Greek letter $\sum$ (capital sigma), indicates the sum of a sequence.

For example:
$$\large \sum_{n=1}^{10}{n^2} = 1^2 + 2^2 + 3^2 + \cdots + 10^2$$
The limits of the sum, the numbers on the bottom and top of the $\sum$, indicate the terms to be included in the sum. When there is no chance of misinterpretation, the lower limit, $n=1$, may be abbreviated to $1$.

A $\textit{series}$ is the sum of the terms of a sequence.
For the $\textit{finite}$ sequence ${u_{n}}$ with $n$ terms, the corresponding series is $u_{1}+u_{2}+u_{3}+\cdots+u_{n}$.
The sum of this series is $S_{n}=u_{1}+u_{2}+u_{3}+\cdots+u_{n}$ and this will always be a finite real number.
$$\require{AMSsymbols} \require{color} \color{red} S_{n}=\sum_{k=1}^{n}{u_{k}} = u_{1} + u_{2} + u_{3} + \cdots + u_{n}$$
For the $\textit{infinite}$ sequence ${u_{n}}$, the corresponding series is $u_{1}+u_{2}+u_{3}+\cdots+u_{n}+\cdots$.
In many cases, the sum of an infinite series cannot be calculated; In some cases, however, it does converge to a finite number.
$$\require{AMSsymbols} \require{color} \color{red} S_{\infty}=\sum_{k=1}^{\infty}{u_{k}} = u_{1} + u_{2} + u_{3} + \cdots + u_{n} + \cdots$$

## Note 1

The lower limit does not have to be always $1$.
\begin{align} \displaystyle \sum_{k=4}^{7}{(2k+1)} &= (2\times 4+1) + (2\times 5+1) + (2\times 6+1) + (2\times 7+1) \\ &= 48 \end{align}

## Note 2

Taking the proper order of calculation sequences, such as braces and brackets, is important.
\begin{align} \displaystyle \sum_{k=1}^{4}{(2k+1)} &\ne \sum_{k=1}^{4}{2k}+1 \\ \text{LHS} &= \sum_{k=1}^{4}{(2k+1)} \\ &= (2 \times 1 + 1)+(2 \times 2 + 1)+(2 \times 3 + 1)+(2 \times 4 + 1) \\ &= 24 \\ \text{RHS} &= \sum_{k=1}^{4}{2k}+1 \\ &= (2 \times 1)+(2 \times 2)+(2 \times 3)+(2 \times 4)+1 \\ &= 21 \\ \therefore \sum_{k=1}^{4}{(2k+1)} &\ne \sum_{k=1}^{4}{2k}+1 \end{align}

## Example 1

Consider the sequence $2, 4, 6, \cdots$. Using sigma notation, write down an expression for $S_{n}$, the sum of the first $n$ terms.

\begin{align} \displaystyle S_{n} &= (2 \times 1)+(2 \times 2)+(2 \times 3)+\cdots+(2 \times n) \\ &= \sum_{k=1}^{n}{2k} \end{align}

## Example 2

Expand and evaluate $\displaystyle \sum_{k=1}^{6}{(k+4)}$.

\begin{align} \displaystyle \sum_{k=1}^{6}{(k+4)} &= (1+4)+(2+4)+(3+4)+(4+4)+(5+4)+(6+4) \\ &= 5+6+7+8+9+10 \\ &= 45 \end{align}

## Example 3

Write down an expression using the sigma notation of the sequence $2+4+8+16+32+64$.

\begin{align} \displaystyle &= 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 \\ &= \sum_{k=1}^{6}{2^k} \end{align}

## Example 4

Evaluate $\displaystyle \sum_{k=3}^{100}{2}$.

\begin{align} \displaystyle \sum_{k=3}^{100}{2} &= \overbrace{2+2+2+\cdots+2}^{98} \\ &= 2 \times 98 \\ &= 196 \end{align}

## Properties of Sigma Notation

$$\large \require{AMSsymbols} \require{color} \color{red}\sum_{k=1}^{n}{(a_{k} + b_{k})} = \sum_{k=1}^{n}{a_{k}} + \sum_{k=1}^{n}{b_{k}}$$
$$\large \require{AMSsymbols} \require{color} \color{red}\sum_{k=1}^{n}{Au_{k}} = A\sum_{k=1}^{n}{u_{k}}$$
where $\color{red}A$ is a constant.

## Example 5

Prove $\displaystyle \sum_{k=1}^{n}{(a_{k} + b_{k})} = \sum_{k=1}^{n}{a_{k}} + \sum_{k=1}^{n}{b_{k}}$.

\begin{align} \displaystyle \text{LHS} &= \sum_{k=1}^{n}{(a_{k} + b_{k})} \\ &= (a_{1}+b_{1})+(a_{2}+b_{2})+(a_{3}+b_{3})+\cdots+(a_{n}+b_{n}) \\ &= (a_{1}+a_{2}+a_{3}+\cdots+a_{n}) + (b_{1}+b_{2}+b_{3}+\cdots+b_{n}) \\ &= \sum_{k=1}^{n}{a_{k}} + \sum_{k=1}^{n}{b_{k}} \\ &= \text{RHS} \end{align}

## Example 6

Prove $\displaystyle \sum_{k=1}^{n}{Au_{k}} = A\sum_{k=1}^{n}{u_{k}}$.

\begin{align} \displaystyle \text{LHS} &= \sum_{k=1}^{n}{Au_{k}} \\ &= Au_{1}+Au_{2}+Au_{3}+\cdots+Au_{n} \\ &= A(u_{1}+u_{2}+u_{3}+\cdots+u_{n}) \\ &= A\sum_{k=1}^{n}{u_{k}} \\ &= \text{RHS} \end{align} ## Induction Made Simple: The Ultimate Guide

“Induction Made Simple: The Ultimate Guide” is your gateway to mastering the art of mathematical induction, demystifying a powerful tool in mathematics. This ultimate guide…

## Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

## High School Math for Life: Making Sense of Earnings

Salary Salary refers to the fixed amount of money that an employer pays an employee at regular intervals, typically on a monthly or biweekly basis,…

## Probability Pro: Mastering Two-Way Tables with Ease

Welcome to a comprehensive guide on mastering probability through the lens of two-way tables. If you’ve ever found probability challenging, fear not. We’ll break it…

## Simplified Method for Calculating First Term and Common Ratio in Infinite Geometric Series

Hello, math enthusiasts! Today, we’re delving into the captivating realm of infinite geometric series and discovering how to easily determine the “First Term” and the…