Sigma Notation | Summation Notation | Sum of an Arithmetic Series

Sigma Notation

Another mathematical device widely used in sequences and series is $\textit{sigma notation}$. The Greek letter $\sum$ (capital sigma), indicates the sum of a sequence.

For example:
$$ \large \sum_{n=1}^{10}{n^2} = 1^2 + 2^2 + 3^2 + \cdots + 10^2$$
The limits of the sum, the numbers on the bottom and top of the $\sum$, indicate the terms to be included in the sum. When there is no chance of misinterpretation, the lower limit, $n=1$, may be abbreviated to $1$.

A $\textit{series}$ is the sum of the terms of a sequence.
For the $\textit{finite}$ sequence ${u_{n}}$ with $n$ terms, the corresponding series is $u_{1}+u_{2}+u_{3}+\cdots+u_{n}$.
The sum of this series is $S_{n}=u_{1}+u_{2}+u_{3}+\cdots+u_{n}$ and this will always be a finite real number.
$$\require{AMSsymbols} \require{color} \color{red} S_{n}=\sum_{k=1}^{n}{u_{k}} = u_{1} + u_{2} + u_{3} + \cdots + u_{n}$$
For the $\textit{infinite}$ sequence ${u_{n}}$, the corresponding series is $u_{1}+u_{2}+u_{3}+\cdots+u_{n}+\cdots$.
In many cases, the sum of an infinite series cannot be calculated; In some cases, however, it does converge to a finite number.
$$\require{AMSsymbols} \require{color} \color{red} S_{\infty}=\sum_{k=1}^{\infty}{u_{k}} = u_{1} + u_{2} + u_{3} + \cdots + u_{n} + \cdots$$

Note 1

The lower limit does not have to be always $1$.
\( \begin{align} \displaystyle
\sum_{k=4}^{7}{(2k+1)} &= (2\times 4+1) + (2\times 5+1) + (2\times 6+1) + (2\times 7+1) \\
&= 48
\end{align} \)

Note 2

Taking the proper order of calculation sequences, such as braces and brackets, is important.
\( \begin{align} \displaystyle
\sum_{k=1}^{4}{(2k+1)} &\ne \sum_{k=1}^{4}{2k}+1 \\
\text{LHS} &= \sum_{k=1}^{4}{(2k+1)} \\
&= (2 \times 1 + 1)+(2 \times 2 + 1)+(2 \times 3 + 1)+(2 \times 4 + 1) \\
&= 24 \\
\text{RHS} &= \sum_{k=1}^{4}{2k}+1 \\
&= (2 \times 1)+(2 \times 2)+(2 \times 3)+(2 \times 4)+1 \\
&= 21 \\
\therefore \sum_{k=1}^{4}{(2k+1)} &\ne \sum_{k=1}^{4}{2k}+1
\end{align} \)

Example 1

Consider the sequence $2, 4, 6, \cdots$. Using sigma notation, write down an expression for $S_{n}$, the sum of the first $n$ terms.

\( \begin{align} \displaystyle
S_{n} &= (2 \times 1)+(2 \times 2)+(2 \times 3)+\cdots+(2 \times n) \\
&= \sum_{k=1}^{n}{2k}
\end{align} \)

Example 2

Expand and evaluate \(\displaystyle \sum_{k=1}^{6}{(k+4)} \).

\( \begin{align} \displaystyle
\sum_{k=1}^{6}{(k+4)} &= (1+4)+(2+4)+(3+4)+(4+4)+(5+4)+(6+4) \\
&= 5+6+7+8+9+10 \\
&= 45
\end{align} \)

Example 3

Write down an expression using the sigma notation of the sequence $2+4+8+16+32+64$.

\( \begin{align} \displaystyle
&= 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 \\
&= \sum_{k=1}^{6}{2^k}
\end{align} \)

Example 4

Evaluate \( \displaystyle \sum_{k=3}^{100}{2} \).

\( \begin{align} \displaystyle
\sum_{k=3}^{100}{2} &= \overbrace{2+2+2+\cdots+2}^{98} \\
&= 2 \times 98 \\
&= 196
\end{align} \)

Properties of Sigma Notation

$$ \large \require{AMSsymbols} \require{color} \color{red}\sum_{k=1}^{n}{(a_{k} + b_{k})} = \sum_{k=1}^{n}{a_{k}} + \sum_{k=1}^{n}{b_{k}}$$
$$ \large \require{AMSsymbols} \require{color} \color{red}\sum_{k=1}^{n}{Au_{k}} = A\sum_{k=1}^{n}{u_{k}}$$
where $\color{red}A$ is a constant.

Example 5

Prove \( \displaystyle \sum_{k=1}^{n}{(a_{k} + b_{k})} = \sum_{k=1}^{n}{a_{k}} + \sum_{k=1}^{n}{b_{k}} \).

\( \begin{align} \displaystyle
\text{LHS} &= \sum_{k=1}^{n}{(a_{k} + b_{k})} \\
&= (a_{1}+b_{1})+(a_{2}+b_{2})+(a_{3}+b_{3})+\cdots+(a_{n}+b_{n}) \\
&= (a_{1}+a_{2}+a_{3}+\cdots+a_{n}) + (b_{1}+b_{2}+b_{3}+\cdots+b_{n}) \\
&= \sum_{k=1}^{n}{a_{k}} + \sum_{k=1}^{n}{b_{k}} \\
&= \text{RHS}
\end{align} \)

Example 6

Prove \( \displaystyle \sum_{k=1}^{n}{Au_{k}} = A\sum_{k=1}^{n}{u_{k}} \).

\( \begin{align} \displaystyle
\text{LHS} &= \sum_{k=1}^{n}{Au_{k}} \\
&= Au_{1}+Au_{2}+Au_{3}+\cdots+Au_{n} \\
&= A(u_{1}+u_{2}+u_{3}+\cdots+u_{n}) \\
&= A\sum_{k=1}^{n}{u_{k}} \\
&= \text{RHS}
\end{align} \)

Unlock your full learning potential—download our expertly crafted slide files for free and transform your self-study sessions!

Discover more enlightening videos by visiting our YouTube channel!

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *