U-substitution in definite integrals is very similar to the method in indefinite integrals. At the same time, the initial bounds (usually x-values) need to be changed to the corresponding u-values for upper and lower limits. You need to account for the limits of the integration.

Alternatively, you can integrate the integral expressions using u-substitutions, then change u-expressions back to x-expressions before substituting the x-bounds.
However, it is your choice to perform the definite integrals, we use the method which changes all x-values to u-values in this article.
$$ \displaystyle \int_{x_1}^{x_2} f(x) dx \leadsto \int_{u_1}^{u_2} f(u) du $$
Basic Form of Definite Integrals by u-Substitution
Find \( \displaystyle \int_{-1}^{0} x(1+x)^{10} dx \) using \( u = 1+x \).
\( \displaystyle \begin{align} u &= 1+x &\text{Step 1: Letting the substitution} \\ \frac{d}{dx}u &= \frac{d}{dx} (1+x) &\text{Step 2: Derive the substitution} \\ \frac{du}{dx} &= 1 \\ du &= dx \\ u &= 1+x \leadsto x = u-1 &\text{Step 3: Change the subject} \\ x &=0 \leadsto u=1+0 = 1 &\text{Step 4: Change the bounds} \\ x &= -1 \leadsto u = 1-1=0 \\ \int_{-1}^{0} x(1+x)^{10} dx &= \int_{0}^{1} (u-1) u^{10} du \\ &= \int_{0}^{1} (u^{11}-u^{10}) du &\text{Step 5: Replace all } x \text{ to } u \\ &= \left[\frac{1}{12}u^{12}-\frac{1}{11} u^{11} \right]_{0}^{1} &\text{Step 6: Evaluate definite integral} \\ &= \frac{1}{12}-\frac{1}{11} \\ &= -\frac{1}{132} \end{align} \)
Please watch the following video for your detailed further study.
Definite Integrals involving Surds
Find \( \displaystyle \int_{0}^{1} x \sqrt{1-x^2} dx \) using \( u = 1 -x^2 \).
\( \displaystyle \begin{align} \frac{d}{dx} u &= \frac{d}{dx} (1-x^2) \\ \frac{du}{dx} &= -2x \\ \frac{du}{-2x} &= dx \\ x &= 1 \leadsto u = 1-1^2 = 0 \\ x &= 0 \leadsto u=1-0^2 = 1 \\ \int_{0}^{1} x \sqrt{1-x^2} dx &= \int_{1}^{0} x \sqrt{u} \frac{du}{-2x} \\ &= -\frac{1}{2} \int_{1}^{0} \sqrt{u} du \\ &= \frac{1}{2} \int_{0}^{1} \sqrt{u} du \\ &= \frac{1}{2} \int_{0}^{1} u^{\frac{1}{2}} du \\ &= \frac{1}{2} \times \frac{1}{\frac{1}{2}+1} \left[u^{\frac{1}{2}+1}\right]_{0}^{1} \\ &= \frac{1}{2} \times \frac{1}{\frac{3}{2}} \left[u^{\frac{3}{2}}\right]_{0}^{1} \\ &= \frac{1}{3} \left[u^{\frac{3}{2}}\right]_{0}^{1} \\ &= \frac{1}{3} \left[ \sqrt{u^3} \right]_{0}^{1} \\ &= \frac{1}{3} \left[ \sqrt{1^3} – \sqrt{0^3} \right] \\ &= \frac{1}{3} \end{align} \)
The following video explains further with detailed explanations.
Definite Integrals by Squaring Substitutions
Find \( \displaystyle \int_{3}^{18} \frac{x}{\sqrt{x-2}} dx \) using \( u = \sqrt{x-2} \).
\( \begin{align} \displaystyle u^2 &= x-2 \\ x &= u^2 + 2 \\ \frac{d}{du} x &= \frac{d}{du} (u^2 + 2) \\ \frac{dx}{du} &= 2u \\ dx &= 2udu \\ x &= 18 \leadsto u = \sqrt{18-2} = 4 \\ x &= 3 \leadsto u = \sqrt{3-2} = 1 \\ \int_{3}^{18} \frac{x}{\sqrt{x-2}} dx &= \int_{1}^{4} \frac{u^2 + 2}{u} 2udu \\ &= \int_{1}^{4} (2u^2 + 4) du \\ &= \left[ \frac{2}{3} u^3 + 4u \right]_{1}^{4} \\ &= \left[ \frac{2}{3} \times 4^3 + 4 \times 4 \right]- \left[ \frac{2}{3} \times 1^3 + 4 \times 1 \right] \\ &= 54 \end{align} \)
You can watch the following video lesson to consolidate your knowledge.
Now, you can try the following question to test your knowledge.
Frequently Asked Questions
Can you use u-substitution for definite integrals?
Absolutely! You can apply the u-substitution method for evaluating definite integrals. While some questions provide the substitutions, you will sometimes need to find the right ones.
How do you change the bounds of definite integrals with u-substitution?
Depending on the u-substitutions, it is required to alter x bounds to corresponding u bounds. For example, \( \displaystyle \int_{1}^{2} f(x) dx \) with a substitution \( u = x+10 \) will change to \( \displaystyle \int_{1+10}^{2+10} f(u) du \).
How do you express definite integrals in terms of u?
The first step is to find the derivative of the u-substitution. For instance, look at an example to find \( \displaystyle \int_{1}^{2} x(x^2+1)^{6} dx \) using \( u=x^2+1 \).
Differentiate both sides of \( u=x^2+1 \), say \( \displaystyle \frac{d}{dx} u = \frac{d}{dx} (x^2+1) \). This gives you \( \displaystyle \frac{du}{dx} = 2x \).
Then you can obtain \( dx = \displaystyle \frac{du}{2x} \), which means \( dx \) is to be replaced by \( \displaystyle \frac{du}{2x} \).
Therefore \( \displaystyle \int_{1}^{2} x(x^2+1)^{6} dx = \int_{2}^{5} x u^{6} \frac{du}{2x} = \frac{1}{2} \int_{2}^{5} u^{6} du \).
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume