# Rationalising Denominators of Multiple Fractions

## Worked Example of Rationalising Denominators

Simplify $\displaystyle\frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \cdots + \frac{1}{\sqrt{99} + \sqrt{100}}$.

\begin{aligned} \displaystyle \require{color} &= \frac{1}{\sqrt{1} + \sqrt{2}} \times \frac{\sqrt{1}-\sqrt{2}}{\sqrt{1}-\sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} \times \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}} + \cdots + \frac{1}{\sqrt{99} + \sqrt{100}} \times \frac{\sqrt{99}-\sqrt{100}}{\sqrt{99}-\sqrt{100}} \\ &= \frac{\sqrt{1}-\sqrt{2}}{1-2} + \frac{\sqrt{2}-\sqrt{3}}{2-3} + \cdots + \frac{\sqrt{99}-\sqrt{100}}{99-100} \\ &= -(\sqrt{1}-\sqrt{2})-(\sqrt{2}-\sqrt{3})-\cdots-(\sqrt{99}-\sqrt{100}) \\ &= -\sqrt{1} + \sqrt{2}-\sqrt{2} + \sqrt{3}-\cdots-\sqrt{99} + \sqrt{100} \\ &= -\sqrt{1} + \sqrt{100} \\ &= -1 + 10 \\ &= 9 \end{aligned}

## Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

## High School Math for Life: Making Sense of Earnings

Salary Salary refers to the fixed amount of money that an employer pays an employee at regular intervals, typically on a monthly or biweekly basis,…

Part 1 Show that for all positive integers $n$, \( x \left[ (1+x)x^{n-1} + (1+x)^{n-2} + \cdots + (1+x)^2 + (1+x) +1 \right]…