Raising a Power to Another Power

Raising a Power to Another Power

If we are given $(2^3)^4$, that can be written in factor form as $2^3 \times 2^3 \times 2^3 \times 2^3$.
We can then simplify the multiplication using the exponent’s rule as $2^{3+3+3+3} = 2^{12}$.

Similarly, if we are given $(5^2)^3$, this means;
\( \begin{align}
(5^2)^3 &= 5^2 \times 5^2 \times 5^2 \\
&= 5^{2+2+2} \\
&= 5^6
\end{align} \)

Using the above method we can see that $(2^3)^4 = 2^{12}$ and $(5^2)^3 = 5^6$.

You will notice that
$$ \large \begin{align} (2^3)^4 &= 2^{3 \times 4} = 2^{12} \\
(5^2)^3 &= 5^{2 \times 3} = 5^6 \end{align} $$

When raising a power to another power, we multiply the exponents (indices).
$$ \large (a^x)^y = a^{x \times y}$$

This rule also implies;
$$ \large \begin{align} (a \times b)^x &= a^x \times b^x \\
\Big(\dfrac{a}{b}\Big)^x &= \dfrac{a^x}{b^x} \end{align} $$

Example 1

Simplify $(6^3)^3$.

\( \begin{align} \displaystyle
(6^3)^3 &= 6^{3 \times 3} \\
&= 6^9
\end{align} \)

Example 2

Simplify $(ab^4)^3$.

\( \begin{align} \displaystyle
(ab^4)^3 &= (a^1b^4)^3 \\
&= a^{1 \times 3} b^{4 \times 3} \\
&= a^3b^{12}
\end{align} \)

Example 3

Simplify $(2a^3b^2)^3$.

\( \begin{align} \displaystyle
(2a^3b^2)^3 &= 2^3 a^{3 \times 3} b^{2 \times 3} \\
&= 8a^9b^{6}
\end{align} \)

Example 4

Simplify $(2x^3)^2 \times (3x^5)^3$.

\( \begin{align} \displaystyle
(2x^3)^2 \times (3x^5)^3 &= 2^2 x^{3 \times 2} \times 3^3 x^{5 \times 3} \\
&= 4x^6 \times 27x^{15} \\
&= (4 \times 27) \times x^{6+15} \\
&= 108x^{21}
\end{align} \)

Example 5

Simplify $\Big(\dfrac{2a^3}{b^2}\Big)^3$.

\( \begin{align} \displaystyle
\Big(\dfrac{2a^3}{b^2}\Big)^3 &= \dfrac{(2a^3)^3}{(b^2)^3} \\
&= \dfrac{2^3 a^{3 \times 3}}{b^{2 \times 3}} \\
&= \dfrac{8 a^9}{b^6}\
\end{align} \)

Unlock your full learning potential—download our expertly crafted slide files for free and transform your self-study sessions!

Discover more enlightening videos by visiting our YouTube channel!

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *