Quotient Rule Differentiation


The quotient rule is a formula for taking the derivative of a quotient of two functions. This formula makes it somewhat easier to keep track of all of the terms.
If $u(x)$ and $v(x)$ are two functions of $x$ and $\displaystyle f(x)=\dfrac{u(x)}{v(x)}$, then
$$f^{\prime}(x)=\dfrac{u^{\prime}(x)v(x)-u(x)v^{\prime}(x)}{v(x)^2}$$
Expressions like $\displaystyle \dfrac{x^2+x+1}{4x-2}$, $\displaystyle \dfrac{\sqrt{x+2}}{x^2-4}$ and $\displaystyle \dfrac{x^4}{(x^3-x^2-1)^5}$ are called quotients because they represent the division of one function by another.


Found some students prefer to apply the product rule instead of applying the quotient rule. For instance, $\displaystyle \dfrac{x}{x+1}$ can be changed to $x(x+1)^{-1}$, but this is not a great idea to differentiate as many students made careless mistakes while applying product rule due to taking longer steps. A form of quotient must apply the quotient rule properly if you want to reduce silly mistakes!

Example 1

Use the quotient rule to differentiate $\displaystyle f(x)=\dfrac{x}{x+1}$.

\( \begin{align} \displaystyle
f^{\prime}(x) &= \dfrac{x^{\prime} \times (x+1) – x \times (x+1)^{\prime}}{(x+1)^2} \\
&= \dfrac{1 \times (x+1) – x \times 1}{(x+1)^2} \\
&= \dfrac{(x+1) – x}{(x+1)^2} \\
&= \dfrac{1}{(x+1)^2} \\
\end{align} \)

Example 2

Use the quotient rule to differentiate $\displaystyle f(x)=\dfrac{3x+1}{1-x}$.

\( \begin{align} \displaystyle
f^{\prime}(x) &= \dfrac{(3x+1)^{\prime} \times (1-x) – (3x+1) \times (1-x)^{\prime}}{(1-x)^2} \\
&= \dfrac{3 \times (1-x) – (3x+1) \times (-1)}{(1-x)^2} \\
&= \dfrac{3-3x +3x+1}{(1-x)^2} \\
&= \dfrac{4}{(1-x)^2} \\
\end{align} \)

Example 3

Use the quotient rule to differentiate $\displaystyle f(x)=\dfrac{3x+1}{1-x}$.

\( \begin{align} \displaystyle
f^{\prime}(x) &= \dfrac{(3x+1)^{\prime} \times (1-x) – (3x+1) \times (1-x)^{\prime}}{(1-x)^2} \\
&= \dfrac{3 \times (1-x) – (3x+1) \times (-1)}{(1-x)^2} \\
&= \dfrac{3-3x +3x+1}{(1-x)^2} \\
&= \dfrac{4}{(1-x)^2} \\
\end{align} \)

Example 4

Use the quotient rule to differentiate $\displaystyle f(x)=\dfrac{(2x+1)^3}{(4x-1)^4}$.

\( \begin{align} \displaystyle
f^{\prime}(x) &= \dfrac{\big[(2x+1)^3\big]^{\prime} \times (4x-1)^4 – (2x+1)^3 \times \big[(4x-1)^4\big]^{\prime}}{\big[(4x-1)^4\big]^2} \\
&= \dfrac{3(2x+1)^{3-1} \times (2x+1)^{\prime} \times (4x-1)^4 – (2x+1)^3 \times 4(4x-1)^{4-1} \times (4x-1)^{\prime}}{(4x-1)^8} \\
&= \dfrac{3(2x+1)^2 \times 2 \times (4x-1)^4 – (2x+1)^3 \times 4(4x-1)^3 \times 4}{(4x-1)^8} \\
&= \dfrac{6(2x+1)^2 (4x-1)^4 – 16(2x+1)^3 (4x-1)^3}{(4x-1)^8} \\
&= \dfrac{(2x+1)^2(4x-1)^3\big[6(4x-1) – 16(2x+1)\big]}{(4x-1)^8} \\
&= \dfrac{(2x+1)^2(4x-1)^3(24x-6 – 32x-16)}{(4x-1)^8} \\
&= \dfrac{(2x+1)^2(4x-1)^3(-8x-22)}{(4x-1)^8} \\
&= \dfrac{(2x+1)^2(-8x-22)}{(4x-1)^5} \\
\end{align} \)

Extension Examples

These Extension Examples require to have some prerequisite skills including;
\( \begin{align} \displaystyle
\dfrac{d}{dx}\sin{x} &= \cos{x} \\
\dfrac{d}{dx}\cos{x} &= -\sin{x} \\
\dfrac{d}{dx}e^x &= e^x \\
\dfrac{d}{dx}\log_e{x} &= \dfrac{1}{x} \\
\end{align} \)

Example 5

Find $\displaystyle \dfrac{dy}{dx}$ of $\displaystyle y=\dfrac{\sin{x}}{\cos{x}}$, known that $\dfrac{d}{dx}\sin{x} = \cos{x}$ and $\dfrac{d}{dx}\cos{x} = -\sin{x}$.

\( \begin{align} \displaystyle
\dfrac{dy}{dx} &= \dfrac{\dfrac{d}{dx}\sin{x} \times \cos{x} – \sin{x} \times \dfrac{d}{dx}\cos{x}}{\cos^2{x}} \\
&= \dfrac{\cos{x} \times \cos{x} – \sin{x} \times (-\sin{x})}{\cos^2{x}} \\
&= \dfrac{\cos^2{x} + \sin^2{x}}{\cos^2{x}} \\
\end{align} \)
Note that optionally $\cos^2{x} + \sin^2{x}$ can be simplified further to $1$, as $\cos^2{x} + \sin^2{x}=1$ in one of the trigonometric properties, however we do not cover this skill here.

Example 6

Find $\displaystyle \dfrac{dy}{dx}$ of $\displaystyle y=\dfrac{e^x}{\log_e{x}}$, known that $\dfrac{d}{dx}e^x = e^x$ and $\dfrac{d}{dx}\log_e{x} = \dfrac{1}{x}$.

\( \begin{align} \displaystyle
\dfrac{dy}{dx} &= \dfrac{\dfrac{d}{dx}e^x \times \log_e{x} – e^x \times \dfrac{d}{dx}\log_e{x}}{(\log_e{x})^2} \\
&= \dfrac{e^x \times \log_e{x} – e^x \times \dfrac{1}{x}}{(\log_e{x})^2} \\
&= \dfrac{xe^x\log_e{x} – e^x}{x(\log_e{x})^2} \\
\end{align} \)


Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Divisibility Proof Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published. Required fields are marked *