# Quadratic Graphs in Intercept Form

$$y=a(x-b)(x-c)$$
Concave up for $a \gt 0$ Concave down for $a \lt 0$ ### Example 1

Draw the graph of $y=(x-1)(x+2)$.

\begin{align} \displaystyle (x-1)(x+2) & = 0 \\ x-1 &= 0 \text{ or } x+2 = 0 \\ \therefore x &= 1 \text{ or } x = -2 \\ \end{align} ### Example 2

Draw the graph of $y=(x+1)(x-2)$.

\begin{align} \displaystyle (x+1)(x-2) & = 0 \\ x+1 &= 0 \text{ or } x-2 = 0 \\ \therefore x &= -1 \text{ or } x = 2 \\ \end{align} ### Example 3

Draw the graph of $y=(x-1)(x-2)$.

\begin{align} \displaystyle (x-1)(x-2) & = 0 \\ x-1 &= 0 \text{ or } x-2 = 0 \\ \therefore x &= 1 \text{ or } x = 2 \\ \end{align} ### Example 4

Draw the graph of $y=(x+1)(x+2)$.

\begin{align} \displaystyle (x+1)(x+2) & = 0 \\ x+1 &= 0 \text{ or } x+2 = 0 \\ \therefore x &= -1 \text{ or } x = -2 \\ \end{align} ### Example 5

Draw the graph of $y=-(x-1)(x+2)$.

\begin{align} \displaystyle -(x-1)(x+2) & = 0 \\ x-1 &= 0 \text{ or } x+2 = 0 \\ \therefore x &= 1 \text{ or } x = -2 \\ \end{align} ### Example 6

Draw the graph of $y=-(x+1)(x-2)$.

\begin{align} \displaystyle -(x+1)(x-2) & = 0 \\ x+1 &= 0 \text{ or } x-2 = 0 \\ \therefore x &= -1 \text{ or } x = 2 \\ \end{align} ### Example 7

Draw the graph of $y=-(x-1)(x-2)$.

\begin{align} \displaystyle -(x-1)(x-2) & = 0 \\ x-1 &= 0 \text{ or } x-2 = 0 \\ \therefore x &= 1 \text{ or } x = 2 \\ \end{align} ### Example 8

Draw the graph of $y=-(x+1)(x+2)$.

\begin{align} \displaystyle -(x+1)(x+2) & = 0 \\ x+1 &= 0 \text{ or } x+2 = 0 \\ \therefore x &= -1 \text{ or } x = -2 \\ \end{align}  