# Quadratic Graphs by Completing the Square

$$y=(x-a)^2+b$$

### Example 1

Draw the graph of $y=(x-1)^2+2$.

The vertex is $(1,2)$, and the graph is concave up.

### Example 2

Draw the graph of $y=(x-1)^2-2$.

The vertex is $(1,-2)$, and the graph is concave up.

### Example 3

Draw the graph of $y=(x+1)^2+2$.

The vertex is $(-1,2)$, and the graph is concave up.

### Example 4

Draw the graph of $y=(x+1)^2-2$.

The vertex is $(-1,-2)$, and the graph is concave up.

### Example 5

Draw the graph of $y=-(x-1)^2+2$.

The vertex is $(1,2)$, and the graph is concave down.

### Example 6

Draw the graph of $y=-(x-1)^2-2$.

The vertex is $(1,-2)$, and the graph is concave down.

### Example 7

Draw the graph of $y=-(x+1)^2+2$.

The vertex is $(-1,2)$, and the graph is concave down.

### Example 8

Draw the graph of $y=-(x+1)^2-2$.

The vertex is $(-1,2)$, and the graph is concave down.

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume

## Responses