Proving Sum of Consecutive Cubes Formula

Proving Sum of Consecutive Cube Numbers Formula

The sum of the first n consecutive cubes is equal to the square of the sum of the first n numbers. This post explains how to analyse the pattern of the sum of consecutive cubes and the square of the sum of the first n numbers, derive the sum formula and prove the formula using mathematical duction.

Analysis of cubes

\( \begin{align} 1^3 &= 1 \\ 2^3 &= 2 \times 2^2 \\ &= 2 \times 4 \\ &= (3-1)(3+1) \\ &= 3^2-1^2 \\ 3^3 &= 3 \times 3^2 \\ &= 3 \times 9 \\ &= (6-3)(6+3) \\ &= 6^2-3^2 \\ 4^3 &= 4 \times 4^2 \\ &= 4 \times 16 \\ &= (10-6)(10+6) \\ &= 10^2-6^2 \\ 5^3 &= 5 \times 5^2 \\ &= 5 \times 25 \\ &= (15-10)(15+10) \\ &= 15^2-10^2 \\ &\cdots \end{align} \)

Pattern of cubes

The difference between the squares of two consecutive triangles equals a cube number.
You may notice the following:
\( \begin{align} 2 &= 3-1 \leadsto 2^3 = 3^2-1^2 \\ 3 &= 6-3 \leadsto 3^3 = 6^2-3^2 \\ 4 &= 10-6 \leadsto 4^3 = 10^2-6^2 \\ 5 &= 15-10 \leadsto 5^3 = 15^2-10^2 \\ &\cdots \end{align} \)

Sum of cubes

\( \begin{align} 1^3 &= (1)^2 \\ 1^3 + 2^3 &= 1^2+ (3^2-1^2) \\ &= 3^2 \\ &= (1+2)^2 \\ 1^3 + 2^3 + 3^3 &= 1^2 + (3^2-1^2) + (6^2-3^2) \\ &= 6^2 \\ &= (1+2+3)^2 \\ 1^3 + 2^3 + 3^3 + 4^3 &= 1^2 + (3^2-1^2) + (6^2-3^2) + (10^2-6^2) \\ &= 10^2 \\ &= (1+2+3+4)^2 \\ 1^3 + 2^3 + 3^3 + 4^3 + 5^3 &= 1^2 + (3^2-1^2) + (6^2-3^2) + (10^2-6^2) + (15^2-10^2) \\ &= 15^2 \\ &= (1+2+3+4+5)^2 \\ &\cdots \require{AMSsymbols} \\ \therefore 1^3+2^3+3^3+4^3+5^3+ \cdots + n^3 &= (1+2+3+4+5+ \cdots + n)^2 \end{align} \)

This remarkable formula is called “The sum of \( n \) consecutive cube numbers is equal to the square of the \(n\) numbers”.

Simplification of the formula

This can also be simplified using \( 1+2+3+ \cdots + n = \displaystyle \frac{n(n+1)}{2} \cdots (1) \) .

\( \begin{align} (1+2+3+4+5+ \cdots + n)^2 &= \displaystyle \left[ \frac{n(n+1)}{2} \right]^2 \\ &= \frac{n^2 (n+1)^2}{4} \cdots (2) \end{align} \)

YouTube player

Proving by mathematical induction

Now let’s prove this formula using mathematical induction.

Step 1

Show it is true for \( n=1 \).
LHS \( =1^3=1 \)
RHS \( = 1^2=1 \)
So the formula is true for \( n=1 \).

Step 2

Assume the formula is true for \( n=k \).
That is \( 1^3+2^3+3^3+ \cdots + k^3 = (1+2+3+ \cdots + k)^2 \).

Step 3

Show the formula is true for \( n=k+1 \).
That is \( 1^3+2^3+3^3+ \cdots + k^3 + (k+1)^3 = (1+2+3+ \cdots + k+1)^2 \).
\( \begin{align} \bbox[yellow]{1^3+2^3+3^3+ \cdots + k^3} + (k+1)^3 &= \bbox[yellow]{(1+2+3+ \cdots + k)^2} + (k+1)^3 &\cdots \text{by step 2}\\ &= \displaystyle \frac{k^2 (k+1)^2}{4} + (k+1)^3 &\cdots \text{by } (1) \\ &= \frac{k^2 (k+1)^2}{4} + 4(k+1) \times \frac{(k+1)^2}{4} \\ &= \frac{(k+1)^2}{4} \times (k^2 + 4k+4) &\cdots \text{factorised} \\ &= \frac{(k+1)^2}{4} \times (k+2)^2 \\ &= (1+2+3+ \cdots + k+1)^2 &\cdots \text{by } (2) \end{align} \)

Therefore the formula is true for any integer \( n\ge 1 \).

Frequently Asked Questions

How to find the sum of consecutive cubes?

\( 1^3+2^3+3^3+4^3+5^3+ \cdots + n^3 = (1+2+3+4+5+ \cdots + n)^2 \)

What is the formula for the sum of cubes?

\( \begin{align} 1^3+2^3+3^3+4^3+5^3+ \cdots + n^3 &= (1+2+3+4+5+ \cdots + n)^2 \\ &= \displaystyle \left[ \frac{n(n+1)}{2} \right]^2 \\ &= \frac{n^2 (n+1)^2}{4} \end{align} \)

Is the sum of three consecutive cubes divisible by 9?

\( n^3 + (n+1)^3 + (n+2)^3 \) is divisible by \( 9 \).
Click here to see how to prove this.

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *