# Product Rule Differentiation

The product rule differentiation is used in differential calculus to help calculate the derivative of products of functions. The formula for the product rule differentiation is written for the product of two or more functions.
If $u(x)$ and $v(x)$ are two functions of $x$ and $f(x)=u(x)v(x)$, then
$$\large f^{\prime}(x) = u^{\prime}(x)v(x) + u(x)v^{\prime}(x)$$
Alternatively if $y=u \times v$ then
$$\large \dfrac{dy}{dx} = \dfrac{du}{dx} \times v + u \times \dfrac{dv}{dx}$$
Expressions like $(x^2-1)(3x^3+2x-1)$, $x^5(x^2+2x-1)^3$ and $(x+1)^4(2x^3-2)^5$ are called products because they represent the product of one function by another.

Note that applying the chain rule needs to be considered at any time. This is where most students forget when they apply the chain rule, which greatly results in silly mistakes.
No matter what rule you apply, the chain rule should be considered to apply in any case for differentiating. Of course, more than two tiers of chain rule are quite common in some complicated questions.

Therefore, if you are serious about applying the chain rule while differentiating using either the quotient rule or product rule differentiation, you will likely get better results than others.

Watch out! The chain rule goes everywhere!

### Example 1

Use the product rule to differentiate $f(x)=x(2x+3)^4$, simplify where possible.

\begin{align} \displaystyle f^{\prime}(x) &= x^{\prime} \times (2x+3)^4 + x \times \big[(2x+3)^4\big]^{\prime} \\ &= 1 \times (2x+3)^4 + x \times 4(2x+3)^{4-1} \times (2x+3)’ \\ &= (2x+3)^4 + 4x(2x+3)^3 \times 2 \\ &= (2x+3)^4 + 8x(2x+3)^3 \\ &= (2x+3)^3\big[(2x+3) + 8x\big] \\ &= (2x+3)^3(10x+3) \end{align}

### Example 2

Use the product rule to differentiate $f(x)=\sqrt{x}(x^2-2)^{10}$.

\begin{align} \displaystyle \sqrt{x} &= x^{\frac{1}{2}} \\ \sqrt{x}^{\prime} &= \dfrac{1}{2}x^{\frac{1}{2}-1} \\ &= \dfrac{1}{2}x^{-\frac{1}{2}} \\ &= \dfrac{1}{2\sqrt{x}} \\ f^{\prime}(x) &= \sqrt{x}^{\prime} \times (x^2-2)^{10} + \sqrt{x} \times \big[(x^2-2)^{10}\big]^{\prime} \\ &= \dfrac{1}{2\sqrt{x}} \times (x^2-2)^{10} + \sqrt{x} \times 10(x^2-2)^{10-1} \times (x^2-2)^{\prime} \\ &= \dfrac{1}{2\sqrt{x}} \times (x^2-2)^{10} + \sqrt{x} \times 10(x^2-2)^{9} \times 2x \\ &= \dfrac{(x^2-2)^{10}}{2\sqrt{x}} + 20x\sqrt{x}(x^2-2)^9 \end{align}

### Example 3

Use the product rule to differentiate $f(x)=(x^2+1)^5(x^3-1)^4$, and simplify where possible.

\begin{align} \displaystyle f^{\prime}(x) &= \big[(x^2+1)^5\big]^{\prime} \times (x^3-1)^4 + (x^2+1)^5 \times \big[(x^3-1)^4\big]^{\prime} \\ &= 5(x^2+1)^{5-1} \times (x^2+1)^{\prime} \times (x^3-1)^4 + (x^2+1)^5 \times 4(x^3-1)^{4-1} \times (x^3-1)^{\prime} \\ &= 5(x^2+1)^{4} \times 2x \times (x^3-1)^4 + (x^2+1)^5 \times 4(x^3-1)^{3} \times 3x^2 \\ &= 10x(x^2+1)^{4}(x^3-1)^4 + 12x^2(x^2+1)^5(x^3-1)^{3} \\ &= 2x(x^2+1)^{4}(x^3-1)^3\big[5(x^3-1)+6x(x^2+1)\big] \\ &= 2x(x^2+1)^{4}(x^3-1)^3(5x^3-5+6x^3+6x) \\ &= 2x(x^2+1)^{4}(x^3-1)^3(11x^3+6x-5) \end{align}

## Extension Examples

These Extension Examples require to have some prerequisite skills, including;
\begin{align} \displaystyle \dfrac{d}{dx}\sin{x} &= \cos{x} \\ \dfrac{d}{dx}\cos{x} &= -\sin{x} \\ \dfrac{d}{dx}e^x &= e^x \\ \dfrac{d}{dx}\log_e{x} &= \dfrac{1}{x} \end{align}

### Example 4

Find $\displaystyle \dfrac{dy}{dx}$ of $y=x\sin{x}$, known that $\dfrac{d}{dx}\sin{x} = \cos{x}$.

\begin{align} \displaystyle \dfrac{dy}{dx} &= \dfrac{d}{dx}x \times \sin{x} + x \times \dfrac{d}{dx}\sin{x} \\ &= 1 \times \sin{x} + x \times \cos{x} \\ &= \sin{x} + x\cos{x} \end{align}

### Example 5

Find $\displaystyle \dfrac{dy}{dx}$ of $y=\sin{x}\cos{x}$, known that $\dfrac{d}{dx}\sin{x} = \cos{x}$ and $\dfrac{d}{dx}\cos{x} = -\sin{x}$.

\begin{align} \displaystyle \dfrac{dy}{dx} &= \dfrac{d}{dx}\sin{x} \times \cos{x} + \sin{x} \times \dfrac{d}{dx}\cos{x} \\ &= \cos{x} \times \cos{x} + \sin{x} \times (-\sin{x}) \\ &= \cos^2{x}-\sin^2{x} \end{align}

### Example 6

Find $\displaystyle \dfrac{dy}{dx}$ of $y=x^2\log_e{2x}$, known that $\dfrac{d}{dx}\log_e{x} = \dfrac{1}{x}$.

\begin{align} \displaystyle \dfrac{dy}{dx} &= \dfrac{d}{dx}x^2 \times \log_e{2x} + x^2 \times \dfrac{d}{dx}\log_e{2x} \\ &= 2x \times \log_e{2x} + x^2 \times \dfrac{1}{2x} \times \dfrac{d}{dx}(2x) \\ &= 2x\log_e{2x} + x^2 \times \dfrac{1}{2x} \times 2 \\ &= 2x\log_e{2x} + x \end{align}

### Example 7

Find $\displaystyle \dfrac{dy}{dx}$ of $y=e^{2x}\sin{3x}$, known that $\dfrac{d}{dx}\sin{x} = \cos{x}$ and $\dfrac{d}{dx}e^x = e^x$.

\begin{align} \displaystyle \dfrac{dy}{dx} &= \dfrac{d}{dx}e^{2x} \times \sin{3x} + e^{2x} \times \dfrac{d}{dx}\sin{3x} \\ &= e^{2x} \times \dfrac{d}{dx}(2x) \times \sin{3x} + e^{2x} \times \cos{3x} \times \dfrac{d}{dx}(3x) \\ &= e^{2x} \times 2 \times \sin{3x} + e^{2x} \times \cos{3x} \times 3 \\ &= 3e^{2x}\sin{3x} + 3e^{2x}\cos{3x} \end{align}

## Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

## Induction Made Simple: The Ultimate Guide

“Induction Made Simple: The Ultimate Guide” is your gateway to mastering the art of mathematical induction, demystifying a powerful tool in mathematics. This ultimate guide…

## Simplified Calculus: Exploring Differentiation by First Principles

Exploring differentiation by first principles Suppose we are given a function $f(x)$ and asked to find its derivative at the point where $x=a$. This is…

## Math Made Easy: Simplifying Function Discovery with Differential Equations

Welcome to the world of mathematics, where equations and functions dance together in a beautiful symphony of numbers and symbols. Today, we’ll embark on a…

## Factorisation Made Easy: Overcoming Harder Expressions

Factorising Cubic Expressions with Rotating Three Variables Factorising cubic expressions is a crucial skill in algebra, and it becomes even more intriguing when dealing with…