Probability by Basic Two-Way Tables | Two-Way Frequency Tables and Probability

\( \begin{array}{|c|c|c|c|} \hline &\text{swimmer} &\text{non-swimmer} &\text{total} \\ \hline \text{Boys} & 11 & 10 & \\ \hline \text{Girls} & 13 & 16 & \\ \hline \text{total} & & \\ \hline \end{array} \)

YouTube player

Question 1

(a)     How many boys are in the class?

\( \require{AMSsymbols} \begin{array}{|c|c|c|c|} \hline &\text{swimmer} &\text{non-swimmer} &\text{total} \\ \hline \text{Boys} & \bbox[yellow,3px]{11} & \bbox[yellow,3px]{10} & \bbox[orange,3px]{21} \\ \hline \text{Girls} & 13 & 16 & \\ \hline \text{total} & & & \\ \hline \end{array} \)
\( \bbox[yellow,3px]{11}+\bbox[yellow,3px]{10} = \bbox[orange,3px]{21} \) boys in the class.

(b)     How many girls are in the class?

\( \require{AMSsymbols} \begin{array}{|c|c|c|c|} \hline &\text{swimmer} &\text{non-swimmer} &\text{total} \\ \hline \text{Boys} & 11 & 10 & 21 \\ \hline \text{Girls} & \bbox[yellow,3px]{13} & \bbox[yellow,3px]{16} & \bbox[orange,3px]{29} \\ \hline \text{total} & & & \\ \hline \end{array} \)
\( \bbox[yellow,3px]{13}+\bbox[yellow,3px]{16} = \bbox[orange,3px]{29} \) girls in the class.

(c)     How many students who can swim are in the class?

\( \require{AMSsymbols} \begin{array}{|c|c|c|c|} \hline &\text{swimmer} &\text{non-swimmer} &\text{total} \\ \hline \text{Boys} & \bbox[yellow,3px]{11} & 10 & 21 \\ \hline \text{Girls} & \bbox[yellow,3px]{13} & 16 & 29 \\ \hline \text{total} & \bbox[orange,3px]{24} & & \\ \hline \end{array} \)
\( \bbox[yellow,3px]{11}+\bbox[yellow,3px]{13} = \bbox[orange,3px]{24} \) swimmers in the class.

(d)     How many students cannot swim in the class?

\( \require{AMSsymbols} \begin{array}{|c|c|c|c|} \hline &\text{swimmer} &\text{non-swimmer} &\text{total} \\ \hline \text{Boys} & 11 & \bbox[yellow,3px]{10} & 21 \\ \hline \text{Girls} & 13 & \bbox[yellow,3px]{16} & 29 \\ \hline \text{total} & 24 & \bbox[orange,3px]{26} & \\ \hline \end{array} \)
\( \bbox[yellow,3px]{10}+\bbox[yellow,3px]{16} = \bbox[orange,3px]{26} \) non-swimmers in the class.

(e)     How many students are in the class?

\( \require{AMSsymbols} \begin{array}{|c|c|c|c|} \hline &\text{swimmer} &\text{non-swimmer} &\text{total} \\ \hline \text{Boys} & 11 & 10 & \bbox[yellow,3px]{21} \\ \hline \text{Girls} & 13 & 16 & \bbox[yellow,3px]{29} \\ \hline \text{total} & \bbox[yellow,3px]{24} & \bbox[yellow,3px]{26} & \bbox[orange,3px]{50} \\ \hline \end{array} \)
\( \begin{align} \bbox[yellow,3px]{24}+\bbox[yellow,3px]{26} &= \bbox[orange,3px]{50} \\ \bbox[yellow,3px]{21}+\bbox[yellow,3px]{29} &= \bbox[orange,3px]{50} \end{align} \) students in the class.

(f)     How many students are boys or swimmers?

\( \require{AMSsymbols} \begin{array}{|c|c|c|c|} \hline &\text{swimmer} &\text{non-swimmer} &\text{total} \\ \hline \text{Boys} & \bbox[yellow,3px]{11} & \bbox[yellow,3px]{10} & 21 \\ \hline \text{Girls} & \bbox[yellow,3px]{13} & 16 & 29 \\ \hline \text{total} & 24 & 26 & 50 \\ \hline \end{array} \)
\( \bbox[yellow,3px]{11}+\bbox[yellow,3px]{10}+\bbox[yellow,3px]{13} = \bbox[orange,3px]{34} \)

(g)     How many students are boys and swimmers?

\( \require{AMSsymbols} \begin{array}{|c|c|c|c|} \hline &\text{swimmer} &\text{non-swimmer} &\text{total} \\ \hline \text{Boys} & \bbox[orange,3px]{11} & 10 & 21 \\ \hline \text{Girls} & 13 & 16 & 29 \\ \hline \text{total} & 24 & 26 & 50 \\ \hline \end{array} \)
\( \bbox[orange,3px]{11} \)

(h)     Find the probability that a randomly chosen student is a girl.

\( \require{AMSsymbols} \begin{array}{|c|c|c|c|} \hline &\text{swimmer} &\text{non-swimmer} &\text{total} \\ \hline \text{Boys} & 11 & 10 & 21 \\ \hline \text{Girls} & 13 & 16 & \bbox[orange,3px]{29} \\ \hline \text{total} & 24 & 26 & \bbox[orange,3px]{50} \\ \hline \end{array} \)
\( \displaystyle \frac{\bbox[orange,3px]{29}}{\bbox[orange,3px]{50}} \)

(i)     Find the probability that a randomly chosen student is a non-swimmer.

\( \require{AMSsymbols} \begin{array}{|c|c|c|c|} \hline &\text{swimmer} &\text{non-swimmer} &\text{total} \\ \hline \text{Boys} & 11 & 10 & 21 \\ \hline \text{Girls} & 13 & 16 & 29 \\ \hline \text{total} & 24 & \bbox[orange,3px]{26} & \bbox[orange,3px]{50} \\ \hline \end{array} \)
\( \displaystyle \frac{\bbox[orange,3px]{26}}{\bbox[orange,3px]{50}} = \frac{\bbox[orange,3px]{13}}{\bbox[orange,3px]{25}} \)

(j)     Find the probability that a randomly chosen student is a girl who can swim.

\( \require{AMSsymbols} \begin{array}{|c|c|c|c|} \hline &\text{swimmer} &\text{non-swimmer} &\text{total} \\ \hline \text{Boys} & 11 & 10 & 21 \\ \hline \text{Girls} & \bbox[orange,3px]{13} & 16 & 29 \\ \hline \text{total} & 24 & 26 & \bbox[orange,3px]{50} \\ \hline \end{array} \)
\( \displaystyle \frac{\bbox[orange,3px]{13}}{\bbox[orange,3px]{50}} \)

YouTube player

Question 2

\( \begin{array}{|c|c|c|c|} \hline &\text{Heavy} &\text{Light} &\text{total} \\ \hline \text{Boys} & & 21 & 33 \\ \hline \text{Girls} & 29 & & \\ \hline \text{total} & & & 80 \\ \hline \end{array} \)

(a)     How many heavy boys are there?

\( \begin{array}{|c|c|c|c|} \hline &\text{Heavy} &\text{Light} &\text{total} \\ \hline \text{Boys} & \bbox[orange,3px]{12} & \bbox[yellow,3px]{21} & \bbox[yellow,3px]{33} \\ \hline \text{Girls} & 29 & & \\ \hline \text{total} & & & 80 \\ \hline \end{array} \)
\( \displaystyle \bbox[yellow,3px]{33}-\bbox[yellow,3px]{21}=\bbox[orange,3px]{12} \)

(b)     How many heavy students are there?

\( \begin{array}{|c|c|c|c|} \hline &\text{Heavy} &\text{Light} &\text{total} \\ \hline \text{Boys} & \bbox[yellow,3px]{12} & 21 & 33 \\ \hline \text{Girls} & \bbox[yellow,3px]{29} & & \\ \hline \text{total} & \bbox[orange,3px]{41} & & 80 \\ \hline \end{array} \)
\( \displaystyle \bbox[yellow,3px]{12}+\bbox[yellow,3px]{29}=\bbox[orange,3px]{41} \)

(c)     How many light students are there?

\( \begin{array}{|c|c|c|c|} \hline &\text{Heavy} &\text{Light} &\text{total} \\ \hline \text{Boys} & 12 & 21 & 33 \\ \hline \text{Girls} & 29 & & \\ \hline \text{total} & \bbox[yellow,3px]{41} & \bbox[orange,3px]{39} & \bbox[yellow,3px]{80} \\ \hline \end{array} \)
\( \displaystyle \bbox[yellow,3px]{80}-\bbox[yellow,3px]{41}=\bbox[orange,3px]{39} \)

(d)     How many light girls are there?

\( \begin{array}{|c|c|c|c|} \hline &\text{Heavy} &\text{Light} &\text{total} \\ \hline \text{Boys} & 12 & \bbox[yellow,3px]{21} & 33 \\ \hline \text{Girls} & 29 & \bbox[orange,3px]{18} & \\ \hline \text{total} & 41 & \bbox[yellow,3px]{39} & 80 \\ \hline \end{array} \)
\( \displaystyle \bbox[yellow,3px]{39}-\bbox[yellow,3px]{21}=\bbox[orange,3px]{18} \)

(e)     How many girls are there?

\( \begin{array}{|c|c|c|c|} \hline &\text{Heavy} &\text{Light} &\text{total} \\ \hline \text{Boys} & 12 & 21 & 33 \\ \hline \text{Girls} & \bbox[yellow,3px]{29} & \bbox[yellow,3px]{18} & \bbox[orange,3px]{47} \\ \hline \text{total} & 41 & 39 & 80 \\ \hline \end{array} \)
\( \displaystyle \bbox[yellow,3px]{29}+\bbox[yellow,3px]{18}=\bbox[orange,3px]{47} \)

(f)     Find the probability that a randomly chosen student is a girl.

\( \begin{array}{|c|c|c|c|} \hline &\text{Heavy} &\text{Light} &\text{total} \\ \hline \text{Boys} & 12 & 21 & 33 \\ \hline \text{Girls} & 29 & 18 & \bbox[orange,3px]{47} \\ \hline \text{total} & 41 & 39 & \bbox[orange,3px]{80} \\ \hline \end{array} \)
\( \displaystyle \frac{\bbox[orange,3px]{47}}{\bbox[orange,3px]{80}} \)

(g)     Find the probability that a randomly chosen student is a light boy.

\( \begin{array}{|c|c|c|c|} \hline &\text{Heavy} &\text{Light} &\text{total} \\ \hline \text{Boys} & 12 & \bbox[orange,3px]{21} & 33 \\ \hline \text{Girls} & 29 & 18 & 47 \\ \hline \text{total} & 41 & 39 & \bbox[orange,3px]{80} \\ \hline \end{array} \)
\( \displaystyle \frac{\bbox[orange,3px]{21}}{\bbox[orange,3px]{80}} \)

(h)     Find the probability that a randomly chosen student is a girl or a heavy student.

\( \begin{array}{|c|c|c|c|} \hline &\text{Heavy} &\text{Light} &\text{total} \\ \hline \text{Boys} & \bbox[yellow,3px]{12} & 21 & 33 \\ \hline \text{Girls} & \bbox[yellow,3px]{29} & \bbox[yellow,3px]{18} & 47 \\ \hline \text{total} & 41 & 39 & \bbox[orange,3px]{80} \\ \hline \end{array} \)
\( \displaystyle \frac{\bbox[yellow,3px]{12}+\bbox[yellow,3px]{29} +\bbox[yellow,3px]{18}}{\bbox[orange,3px]{80}} = \frac{\bbox[yellow,3px]{59}}{\bbox[orange,3px]{80}} \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published. Required fields are marked *