Powers of Cosine or Sine by Complex Number

Powers of Cosine or Sine by Complex Number

Show that \( \cos 4 \theta = 8 \cos^4 \theta-8 \cos^2 \theta + 1 \).

(a)  By considering the real part of \( z^4 \), prove \( \cos 4\theta = \cos^4 \theta-6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta \) by letting \( z = \cos \theta + i \sin \theta \).

\( \require{AMSsymbols} \begin{align} \displaystyle \require{color}
z &= \cos \theta + i \sin \theta \\
z^4 &= (\cos \theta + i \sin \theta)^4 \\
& = \cos 4\theta + i \sin 4\theta \cdots (1) &\color{red} \text{by De Moivre’s theorem}\\
z^4 &= (\cos \theta + i \sin \theta)^4 \\
&= \cos^4 \theta + 4 i \cos^3\theta \sin \theta + 6 i^2 \cos^2 \theta \sin ^2 \theta + 4i \cos \theta \sin^3 \theta + i^4 \sin \theta \\
&= \cos^4 \theta + 4 i \cos^3\theta \sin \theta-6 \cos^2 \theta \sin ^2 \theta + 4i \cos \theta \sin^3 \theta + \sin^4 \theta \\
&= (\cos^4 \theta-6 \cos^2 \theta \sin ^2 \theta + \sin^4 \theta ) + i(4 \cos^3\theta \sin \theta + 4 \cos \theta \sin^3 \theta) \cdots (2) \\
\end{align} \)
Equate only the real component of the expansion of \( (1) \) and \( (2) \).
\( \therefore \cos 4\theta = \cos^4 \theta-6 \cos^2 \theta \sin ^2 \theta + \sin^4 \theta \)

(b)   Hence, find an expression for \( \sin 4\theta \) involving powers of \( \sin \theta \) and \( \cos \theta \).

\( \require{AMSsymbols} \begin{align} \require{color}
\sin 4\theta &= 4 \cos^3\theta \sin \theta + 4 \cos \theta \sin^3 \theta &\color{red} \text{equating the imaginery parts}\\
\end{align} \)

(c)   Hence, find an expression for \( \cos 4\theta \) involving only powers of \( \cos \theta \).

\( \require{AMSsymbols} \begin{align} \require{color}
\cos 4\theta &= \cos^4 \theta-6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta &\color{red} \text{equating the real parts}\\
&= \cos^4 \theta-6 \cos^2 \theta (1-\cos^2 \theta) + (1-\cos^2 \theta)^2 \\
&= \cos^4 \theta-6 \cos^2 \theta + 6 \cos^4 \theta + 1-2 \cos^2 \theta + \cos^4 \theta \\
&= 8 \cos^4 \theta-8 \cos^2 \theta + 1
\end{align} \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *