Prove by mathematical induction that for all integers \( n \ge 1 \) ,
$$ \dfrac{1}{2!} + \dfrac{2}{3!} + \dfrac{3}{4!} + \cdots + \dfrac{n}{(n+1)!} = 1-\dfrac{1}{(n+1)!}$$
Step 1
Show it is true for \( n=1 \).
\( \begin{align} \displaystyle
\text{LHS } &= \dfrac{1}{2!} = \dfrac{1}{2} \\
\text{RHS } &= 1-\dfrac{1}{2!} \\
&= 1-\dfrac{1}{2} \\
&= \dfrac{1}{2}
\end{align} \)
Thus, the statement is true for \( n=1 \).
Step 2
Assume the statement is true for \( n=k \), that is;
\( \dfrac{1}{2!} + \dfrac{2}{3!} + \dfrac{3}{4!} + \cdots + \dfrac{k}{(k+1)!} = 1-\dfrac{1}{(k+1)!} \)
Step 3
Show the statement is true for \( n=k+1 \), that is;
\( \dfrac{1}{2!} + \dfrac{2}{3!} + \dfrac{3}{4!} + \cdots + \dfrac{k}{(k+1)!} + \dfrac{k+1}{(k+2)!} = 1-\dfrac{1}{(k+2)!} \)
\( \begin{align} \displaystyle
\text{LHS } &= \dfrac{1}{2!} + \dfrac{2}{3!} + \dfrac{3}{4!} + \cdots + \dfrac{k}{(k+1)!} + \dfrac{k+1}{(k+2)!} \\
&= 1-\dfrac{1}{(k+1)!} + \dfrac{k+1}{(k+2)!} \\
&= 1-\dfrac{k+2}{(k+2)(k+1)!} + \dfrac{k+1}{(k+2)!} \\
&= 1-\dfrac{k+2}{(k+2)!} + \dfrac{k+1}{(k+2)!} \\
&= 1-\bigg[\dfrac{k+2}{(k+2)!}-\dfrac{k+1}{(k+2)!}\bigg] \\
&= 1-\dfrac{1}{(k+2)!} \\
&= \text{RHS}
\end{align} \)
Therefore, by mathematical induction, the statement is true for all integers \( n \ge 1 \).
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume
I don’t even know the way I ended up right here, but I thought this post was
once good. I do not recognise who you are however certainly
you are going to a well-known blogger in case you aren’t already.
Cheers!