Mathematical Induction Regarding Factorials

Prove by mathematical induction that for al lintegers \( n \ge 1 \) ,
$$ \dfrac{1}{2!} + \dfrac{2}{3!} + \dfrac{3}{4!} + \cdots + \dfrac{n}{(n+1)!} = 1 – \dfrac{1}{(n+1)!}$$

Step 1: Show it is true for \( n=1 \).
\( \begin{align} \displaystyle
\text{LHS } &= \dfrac{1}{2!} = \dfrac{1}{2} \\
\text{RHS } &= 1 – \dfrac{1}{2!} \\
&= 1 – \dfrac{1}{2} \\
&= \dfrac{1}{2} \\
\end{align} \)
Thus, the statement is true for \( n=1 \).
Step 2: Assume the statement is true for \( n=k \), that is;
\( \dfrac{1}{2!} + \dfrac{2}{3!} + \dfrac{3}{4!} + \cdots + \dfrac{k}{(k+1)!} = 1 – \dfrac{1}{(k+1)!} \)
Step 3: Show the statement is true for \( n=k+1 \), that is;
\( \dfrac{1}{2!} + \dfrac{2}{3!} + \dfrac{3}{4!} + \cdots + \dfrac{k}{(k+1)!} + \dfrac{k+1}{(k+2)!} = 1 – \dfrac{1}{(k+2)!} \)
\( \begin{align} \displaystyle
\text{LHS } &= \dfrac{1}{2!} + \dfrac{2}{3!} + \dfrac{3}{4!} + \cdots + \dfrac{k}{(k+1)!} + \dfrac{k+1}{(k+2)!} \\
&= 1 – \dfrac{1}{(k+1)!} + \dfrac{k+1}{(k+2)!} \\
&= 1 – \dfrac{k+2}{(k+2)(k+1)!} + \dfrac{k+1}{(k+2)!} \\
&= 1 – \dfrac{k+2}{(k+2)!} + \dfrac{k+1}{(k+2)!} \\
&= 1 – \bigg[\dfrac{k+2}{(k+2)!} – \dfrac{k+1}{(k+2)!}\bigg] \\
&= 1 – \dfrac{1}{(k+2)!} \\
&= \text{RHS} \\
\end{align} \)
Therefore, by the process of mathematical induction the statement is true for all integers \( n \ge 1 \).


Absolute Value Algebra Algebraic Fractions Arithmetic Sequence Binomial Expansion Chain Rule Circle Geometry Common Difference Common Ratio Compound Angle Formula Compound Interest Cyclic Quadrilateral Differentiation Discriminant Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Inequality Integration Kinematics Logarithm Logarithmic Functions Mathematical Induction Perfect Square Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Quotient Rule Rational Functions Sequence Sketching Graphs Surds Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published. Required fields are marked *