Logarithmic Inequalities

Solving logarithmic inequalities, it is important to understand the direction of the inequality changes if the base of the logarithms is less than 1.
$$\log_{2}{x} \lt \log_{2}{y}, \text{ then } x \lt y \\
\log_{0.5}{x} \lt \log_{0.5}{y}, \text{ then } x \gt y \\
$$
Also the domain of the logarithm is positive.
$$\log_{10}{(x-2)}, \text{ then } x-2 \gt 0$$

Question 1

Solve \( \log_{3}{(x-3)} \gt \log_{3}{(x-1)}. \)

\( \begin{aligned} \displaystyle \require{color}
\text{domain: } x-3 &\gt 0 \text{ or } x-1 \gt 0 \\
\text{that is } x &\gt 3 \color{green} \cdots (1) \\
x-3 &\gt x-1 \\
x &\gt 2 \color{green} \cdots (2) \\
\therefore x &\gt 3 &\color{green} \text{ by (1) and (2)}\\
\end{aligned} \\ \)

Question 2

Solve \( \log_{3}{(x-3)} \gt \log_{9}{(x-1)} \).

\( \begin{aligned} \displaystyle \require{color}
\text{domain: } x-3 &\gt 0 \text{ or } x-1 \gt 0 \\
\text{that is } x &\gt 3 \color{green} \cdots (1) \\
\log_{3}{(x-3)} &\gt \frac{\log_{3}{(x-1)}}{\log_{3}{9}} &\color{green} \log_{a}{b} = \frac{\log_{c}{b}}{\log_{c}{a}} \\
\log_{3}{(x-3)} &\gt \frac{\log_{3}{(x-1)}}{\log_{3}{3^2}} \\
\log_{3}{(x-3)} &\gt \frac{\log_{3}{(x-1)}}{2\log_{3}{3}} \\
\log_{3}{(x-3)} &\gt \frac{\log_{3}{(x-1)}}{2} \\
2 \log_{3}{(x-3)} &\gt \log_{3}{(x-1)} \\
\log_{3}{(x-3)^2} &\gt \log_{3}{(x-1)} \\
(x-3)^2 &\gt x-1 \\
x^2 -6x + 9 &\gt x-1 \\
x^2 -7x + 10 &\gt 0 \\
(x-2)(x-5) &\gt 0 \\
x &\lt 2 \text{ or } x \gt 5 \color{green} \cdots (2) \\
\therefore x &\gt 5 &\color{green} \text{by (1) and (2) } \\
\end{aligned} \\ \)

Question 3

Solve \( \log_{0.5}{(x^2-19)} – \log_{0.5}{(x-5)} \lt \log_{0.5}{5} \).

\( \begin{aligned} \displaystyle \require{color}
\text{domain: } x^2-19 &\gt 0 \text{ or } x-5 \gt 0 \\
\text{that is } x &\gt 5 \color{green} \cdots (1) \\
\log_{0.5}{(x^2-19)} &\lt \log_{0.5}{5} + \log_{0.5}{(x-5)} \\
\log_{0.5}{(x^2-19)} &\lt \log_{0.5}{5(x-5)} \\
x^2-19 &\gt 5(x-5) &\color{green} \text{direction changed as base } \lt 1 \\
x^2-19 &\gt 5x-25 \\
x^2 – 5x +6 &\gt 0 \\
(x-2)(x-3) &\gt 0 \\
x &\lt 2 \text{ or } x \gt 3 \color{green} \cdots (2) \\
\therefore x &\gt 5 &\color{green} \text{ by (1) and (2) } \\
\end{aligned} \\ \)

Question 4

Solve \( (\log_{3}{x})^2 \lt \log_{3}{x^4} \).

\( \begin{aligned} \displaystyle
(\log_{3}{x})^2 &\lt 4\log_{3}{x} \\
(\log_{3}{x})^2 – 4\log_{3}{x} &\lt 0 \\
\log_{3}{x}(\log_{3}{x} – 4) &\lt 0 \\
0 &\lt \log_{3}{x} \lt 4 \\
3^0 &\lt x \lt 3^4 \\
\therefore 1 &\lt x \lt 81 \\
\end{aligned} \\ \)

Question 5

Solve \( x^{\log_{2}{x}} \lt 8 x^2 \).

\( \begin{aligned} \displaystyle
\log_{2}{x^{\log_{2}{x}}} &\lt \log_{2}{8x^2} \\
\log_{2}{x} \times \log_{2}{x} &\lt \log_{2}{8} + \log_{2}{x^2} \\
(\log_{2}{x})^2 &\lt \log_{2}{2^3} + 2\log_{2}{x} \\
(\log_{2}{x})^2 &\lt 3 + 2\log_{2}{x} \\
(\log_{2}{x})^2 – 2\log_{2}{x} – 3 &\lt 0 \\
(\log_{2}{x} + 1)(\log_{2}{x} – 3) &\lt 0 \\
-1 &\lt \log_{2}{x} \lt 3 \\
2^{-1} &\lt x \lt 2^3 \\
\therefore \frac{1}{2} &\lt x \lt 8 \\
\end{aligned} \)

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Divisibility Proof Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume

 



Your email address will not be published. Required fields are marked *