Logarithmic Inequalities

Logarithmic Inequalities

In solving logarithmic inequalities, it is important to understand the direction of the inequality changes if the base of the logarithms is less than 1.
$$\log_{2}{x} \lt \log_{2}{y}, \text{ then } x \lt y \\
\log_{0.5}{x} \lt \log_{0.5}{y}, \text{ then } x \gt y \\
$$
Also, the domain of the logarithm is positive.
$$\log_{10}{(x-2)}, \text{ then } x-2 \gt 0$$

YouTube player

Question 1

Solve \( \log_{3}{(x-3)} \gt \log_{3}{(x-1)}. \)

\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
\text{domain: } x-3 &\gt 0 \text{ or } x-1 \gt 0 \\
\text{that is } x &\gt 3 \color{green} \cdots (1) \\
x-3 &\gt x-1 \\
x &\gt 2 \color{green} \cdots (2) \\
\therefore x &\gt 3 &\color{green} \text{ by (1) and (2)}\\
\end{aligned} \\ \)

Question 2

Solve \( \log_{3}{(x-3)} \gt \log_{9}{(x-1)} \).

\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
\text{domain: } x-3 &\gt 0 \text{ or } x-1 \gt 0 \\
\text{that is } x &\gt 3 \color{green} \cdots (1) \\
\log_{3}{(x-3)} &\gt \frac{\log_{3}{(x-1)}}{\log_{3}{9}} &\color{green} \log_{a}{b} = \frac{\log_{c}{b}}{\log_{c}{a}} \\
\log_{3}{(x-3)} &\gt \frac{\log_{3}{(x-1)}}{\log_{3}{3^2}} \\
\log_{3}{(x-3)} &\gt \frac{\log_{3}{(x-1)}}{2\log_{3}{3}} \\
\log_{3}{(x-3)} &\gt \frac{\log_{3}{(x-1)}}{2} \\
2 \log_{3}{(x-3)} &\gt \log_{3}{(x-1)} \\
\log_{3}{(x-3)^2} &\gt \log_{3}{(x-1)} \\
(x-3)^2 &\gt x-1 \\
x^2-6x + 9 &\gt x-1 \\
x^2-7x + 10 &\gt 0 \\
(x-2)(x-5) &\gt 0 \\
x &\lt 2 \text{ or } x \gt 5 \color{green} \cdots (2) \\
\therefore x &\gt 5 &\color{green} \text{by (1) and (2) } \\
\end{aligned} \\ \)

Question 3

Solve \( \log_{0.5}{(x^2-19)}-\log_{0.5}{(x-5)} \lt \log_{0.5}{5} \).

\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
\text{domain: } x^2-19 &\gt 0 \text{ or } x-5 \gt 0 \\
\text{that is } x &\gt 5 \color{green} \cdots (1) \\
\log_{0.5}{(x^2-19)} &\lt \log_{0.5}{5} + \log_{0.5}{(x-5)} \\
\log_{0.5}{(x^2-19)} &\lt \log_{0.5}{5(x-5)} \\
x^2-19 &\gt 5(x-5) &\color{green} \text{direction changed as base } \lt 1 \\
x^2-19 &\gt 5x-25 \\
x^2-5x +6 &\gt 0 \\
(x-2)(x-3) &\gt 0 \\
x &\lt 2 \text{ or } x \gt 3 \color{green} \cdots (2) \\
\therefore x &\gt 5 &\color{green} \text{ by (1) and (2) } \\
\end{aligned} \\ \)

Question 4

Solve \( (\log_{3}{x})^2 \lt \log_{3}{x^4} \).

\( \begin{aligned} \displaystyle
(\log_{3}{x})^2 &\lt 4\log_{3}{x} \\
(\log_{3}{x})^2-4\log_{3}{x} &\lt 0 \\
\log_{3}{x}(\log_{3}{x}-4) &\lt 0 \\
0 &\lt \log_{3}{x} \lt 4 \\
3^0 &\lt x \lt 3^4 \\
\therefore 1 &\lt x \lt 81 \\
\end{aligned} \\ \)

Question 5

Solve \( x^{\log_{2}{x}} \lt 8 x^2 \).

\( \begin{aligned} \displaystyle
\log_{2}{x^{\log_{2}{x}}} &\lt \log_{2}{8x^2} \\
\log_{2}{x} \times \log_{2}{x} &\lt \log_{2}{8} + \log_{2}{x^2} \\
(\log_{2}{x})^2 &\lt \log_{2}{2^3} + 2\log_{2}{x} \\
(\log_{2}{x})^2 &\lt 3 + 2\log_{2}{x} \\
(\log_{2}{x})^2-2\log_{2}{x}-3 &\lt 0 \\
(\log_{2}{x} + 1)(\log_{2}{x}-3) &\lt 0 \\
-1 &\lt \log_{2}{x} \lt 3 \\
2^{-1} &\lt x \lt 2^3 \\
\therefore \frac{1}{2} &\lt x \lt 8 \\
\end{aligned} \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *