Logarithmic Equations

We can use the laws of logarithms to write equations in different forms. This can be particularly useful if an unknown appears as an index (exponent).
$$ \large 2^x=7$$
For the logarithmic function, for every value of $y$, there is only one corresponding value of $x$.
$$ \large y=5^x$$
We can, therefore, take the logarithm of both sides of an equation without changing the solution. However, we can only do this if both sides are positive.

The equation $\log_{a}{y} = x$ is an example of a general logarithmic equation. Laws of logarithms and exponents (indices) are used to solve these equations.

YouTube player

Example 1

Write \( y=a^3b^2 \) as logarithmic equations in base \( 10 \).

\( \begin{align} \displaystyle
\log_{10}{y} &= \log_{10}{(a^3b^2)} \\
\log_{10}{y} &= \log_{10}{a^3} + \log_{10}{b^2} \\
\therefore \log_{10}{y} &= 3\log_{10}{a} + 2\log_{10}{b}
\end{align} \)

Example 2

Write $\log{x}=\log{a} + 2\log{b}- 3\log{c}$ without logarithms.

\( \begin{align} \displaystyle
\log{x} &= \log{a} + 2\log{b}-3\log{c} \\
\log{x} &= \log{a} + \log{b^2}-\log{c^3} \\
\log{x} &= \log{\dfrac{ab^2}{c^3}} \\
\therefore x &= \dfrac{ab^2}{c^3}
\end{align} \)

Example 3

Write $x^2$ the subject of $2\log_{5}{x}=\log_{5}{3a} + 2$.

\( \begin{align} \displaystyle
\log_{5}{x^2} &= \log_{5}{3a} + 2 \times 1 \\
\log_{5}{x^2} &= \log_{5}{3a} + 2 \times \log_{5}{5} \\
\log_{5}{x^2} &= \log_{5}{3a} + \log_{5}{5^2} \\
\log_{5}{x^2} &= \log_{5}{3a} + \log_{5}{25} \\
\log_{5}{x^2} &= \log_{5}{(3a \times 25)} \\
\log_{5}{x^2} &= \log_{5}{75a} \\
\therefore x^2 &= 75a
\end{align} \)

Example 4

Write $x$ in terms of $y$ given $y=5 \times 2^x$.

\( \begin{align} \displaystyle
\log_{2}{y} &= \log_{2}{(5 \times 2^x)} \\
\log_{2}{y} &= \log_{2}{5} + \log_{2}{2^x} \\
\log_{2}{y} &= \log_{2}{5} + x\log_{2}{2} \\
\log_{2}{y} &= \log_{2}{5} + x \times 1 \\
\log_{2}{y} &= \log_{2}{5} + x \\
x &= \log_{2}{5}-\log_{2}{y} \\
\therefore x &= \log_{2}{\dfrac{5}{y}}
\end{align} \)

Example 5

Find $x$ if $\log_{3}{9} = x-2$.

\( \begin{align} \displaystyle
\log_{3}{3^2} &= x-2 \\
2\log_{3}{3} &= x-2 \\
2 \times 1 &= x-2 \\
2 &= x-2 \\
x-2 &= 2 \\
\therefore x &= 4
\end{align} \)

Example 6

Find $x$ if $\log_{4}{x}=-2$.

\( \begin{align} \displaystyle
\log_{4}{x} &= -2 \\
x &= 4^{-2} \\
x &= \dfrac{1}{4^2} \\
\therefore x &= \dfrac{1}{16}
\end{align} \)

Example 7

Find \( x \) if \( 3\log_{x}{16}=6 \), \( x>0 \).

\( \begin{align} \displaystyle
\log_{x}{16} &= 2 &\text{divide both sides by 3} \\
x^2 &= 16 \\
x^2 &= 4^2 \\
\therefore x &= 4
\end{align} \)

Example 8

Solve $\log_{x}{\dfrac{1}{125}} = -3$.

\( \begin{align} \displaystyle
\log_{x}{\dfrac{1}{125}} &= -3 \\
x^{-3} &= \dfrac{1}{125} \\
x^{-3} &= \dfrac{1}{5^3} \\
x^{-3} &= 5^{-3} \\
\therefore x &= 5
\end{align} \)

Example 9

Solve $\log_{10}{x} + \log_{10}{(x-3)} = \log_{10}{4}$.

\( \begin{align} \displaystyle
\log_{10}{x} + \log_{10}{(x-3)} &= \log_{10}{4} \\
\log_{10}{x(x-3)} &= \log_{10}{4} \\
x(x-3) &= 4 \\
x^2-3x &= 4 \\
x^2-3x-4 &= 0 \\
(x-4)(x+1) &= 0 \\
x &= 4 \text{ or } x = -1 \\
\therefore x &=4 &x>0
\end{align} \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published. Required fields are marked *