Logarithm Definition

A logarithm determines “$\textit{How many of this number do we multiply to get the number?}$”.
The exponent gives the power to which a base is raised to make a given number.
For example, $5^2=25$ indicates that the logarithm of $25$ to the base $5$ is $2$.
$$ \large 25=5^2 \Leftrightarrow 2=\log_{5}{25}$$
If $b=a^x,a \ne 1, a>0$, we say that $x$ is the logarithm in base $a$ of $b$, and then:
$$ \large b=a^x \Leftrightarrow x = \log_{a}{b}$$
It is read as “$b=a^x$” if and only if $x = \log_{a}{b}$.
It is a short way of writing:
If $b=a^x$ then $x=\log_{a}{b}$, and if $x=\log_{a}{b}$ then $b=a^x$.
These mean that $b=a^x$ and $x=\log_{a}{b}$ are $\textit{equivalent}$ or $\textit{interchangeable}$ statement.
$$ \begin{align} \require{AMSsymbols} \require{color}
y &= a^x \cdots (1) \\
x &= \log_{a}{y} \cdots (2) \\
\therefore \color{green}x &\color{green}= \color{green}\log_{a}{a^x} &\text{ by } (1) \text{ and } (2) \\
\end{align} $$
$$ \begin{align}
x &= a^y \cdots (3) \\
y &= \log_{a}{x} \cdots (4) \\
\therefore \color{green}x &\color{green}= \color{green}a^{\log_{a}{x}} &\text{ by } (3) \text{ and } (4)
\end{align} $$
Example 1
Write $3^2=9$ in an equivalent logarithmic statement.
$3^2=9 \leadsto 2=\log_{3}{9}$
Example 2
Write $3=\log_{4}{64}$ in an equivalent exponential logarithmic statement.
$3=\log_{4}{64} \leadsto 4^3=64$
Example 3
Find $\log_{3}{81}$ without using a calculator.
\( \begin{align} \displaystyle
\log_{3}{81} &= \log_{3}{3^4} \\
&= 4
\end{align} \)
Example 4
Find $\log_{5}{0.2}$ without using a calculator.
\( \begin{align} \displaystyle
\log_{5}{0.2} &= \log_{5}{\frac{2}{10}} \\
&= \log_{5}{\frac{1}{5}} \\
&= \log_{5}{5^{-1}} \\
&= -1
\end{align} \)
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume
Responses