Internal Division of Line Segments

Internal Division of Line Segments

Internal Division an interval in a given ratio is that if the interval \( (x_1,y_1) \) and \( (x_2,y_2) \) is divided in the ratio \( m:n \) then the coordinates are;
$$ \large \Big(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n}\Big)$$

Example 1: Basics

If \(A\) and \(B\) are the points \( (-4,3) \) and \( (2,-1) \) respectively, find the coordinates of \(P\) such that \( AP:PB=3:1\).

\( \begin{aligned} \displaystyle
P(x,y) &= \Big(\frac{3 \times 2 + 1 \times -4}{3+1},\frac{3 \times -1 + 1 \times 3}{3+1}\Big) \\
&= \Big(\frac{1}{2},0\Big) \\
\end{aligned} \\ \)

Example 2: Negative Ratio of Internal Division of Line Segments

If \(A\) and \(B\) are the points \( (-4,3) \) and \( (2,-1) \) respectively, find the coordinates of \(P\) such that \( AP:PB=-4:5\).

\( \begin{aligned} \displaystyle
P(x,y) &= \Big(\frac{-4 \times 2 + 5 \times -4}{-4+5},\frac{-4 \times -1 + 5 \times 3}{-4+5}\Big) \\
&= (-28,19) \\
\end{aligned} \\ \)

Example 3: Three Equal Parts using Internal Division of Line Segments

Divide the interval between \( (-1,1) \) and \( (5,10) \) into three equal parts.

\( \begin{aligned} \displaystyle
(a,b) &= \Big(\frac{1 \times 5 + 2 \times -1}{1+2},\frac{1 \times 10 + 2 \times 1}{1+2}\Big) \\
&= (1,4) \\
(c,d) &= \Big(\frac{2 \times 5 + 1 \times -1}{2+1},\frac{2 \times 10 + 1 \times 1}{2+1}\Big) \\
&= (3,7) \\
\end{aligned} \\ \)

Example 4: Finding the Ratio of Internal Division of Line Segments

If the point \( (-3,8) \) divides the interval between \( (6,-4) \) and \( (0,4) \) internally in the ratio \( k:1 \), find the value of \(k\).

\( \begin{aligned} \displaystyle
(-3,8) &= \Big(\frac{k \times 0 + 1 \times 6}{k+1},\frac{k \times 4 + 1 \times -4}{k+1}\Big) \\
&= \Big(\frac{6}{k+1},\frac{4k-4}{k+1}\Big) \\
\frac{6}{k+1} &= -3 \\
k+1 &= 6 \div -3 \\
k+1 &= -2 \\
\therefore k &= -3 \\
\end{aligned} \\ \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *