Integration using Double Angle Formula


$$ \begin{align} \displaystyle
\cos{2x} &= 2\cos^2{x} – 1 \\
&= 1-2 \sin^2 {x} \\
&= \cos^2{x} – \sin^2{x} \\
\sin{2x} &= 2 \sin{x} \cos{x} \\
\end{align} $$

These will be expressed in the following forms in order to apply to integrate.

$$ \begin{align} \displaystyle
\sin^2 x &= \dfrac{1}{2}(1 – \cos 2x) \\
\cos^2 x &= \dfrac{1}{2}(1 + \cos 2x) \\
\sin x \cos x &= \dfrac{1}{2} \sin 2x \\
\end{align} $$

Example 1

Find $\displaystyle \int{\sin^2{x}}dx$.

\( \begin{align} \displaystyle
\cos{2x} &= 1 – 2 \sin^2{x} \\
2 \sin^2{x} &= 1 – \cos{2x} \\
\sin^2{x} &= \dfrac{1}{2}(1 – \cos{2x}) \\
\int{\sin^2{x}}dx &= \dfrac{1}{2} \int{(1-\cos{2x})}dx \\
&= \dfrac{1}{2}\big(x-\dfrac{1}{2}\sin{2x}\big)+c \\
\end{align} \)

Example 2

Find $\displaystyle \int{\cos^2{x}}dx$.

\( \begin{align} \displaystyle
\cos{2x} &= 2 \cos^2{x} – 1 \\
2 \cos^2{x} &= 1 + \cos{2x} \\
\cos^2{x} &= \dfrac{1}{2}(1 + \cos{2x}) \\
\int{\cos^2{x}}dx &= \dfrac{1}{2} \int{(1+ \cos{2x})}dx \\
&= \dfrac{1}{2}\big(x+\dfrac{1}{2}\sin{2x}\big) + c\\
\end{align} \)

Example 3

Find $\displaystyle \int{\sin^2{x}}dx$.

\( \begin{align} \displaystyle
\cos{2x} &= 1 – 2 \sin^2{x} \\
2 \sin^2{x} &= 1 – \cos{2x} \\
\sin^2{x} &= \dfrac{1}{2}(1 – \cos{2x}) \\
\sin^2{2x} &= \dfrac{1}{2}(1 – \cos{4x}) \\
\int{\sin^2{2x}}dx &= \dfrac{1}{2} \int{(1-\cos{4x})}dx \\
&= \dfrac{1}{2}\big(x-\dfrac{1}{4}\sin{4x}\big)+c \\
\end{align} \)

Example 4

Find $\displaystyle \int{\cos^2{6x}}dx$.

\( \begin{align} \displaystyle
\cos{2x} &= 2 \cos^2{x} – 1 \\
2 \cos^2{x} &= 1 + \cos{2x} \\
\cos^2{x} &= \dfrac{1}{2}(1 + \cos{2x}) \\
\cos^2{6x} &= \dfrac{1}{2}(1 + \cos{12x}) \\
\int{\cos^2{6x}}dx &= \dfrac{1}{2} \int{(1+ \cos{12x})}dx \\
&= \dfrac{1}{2}\big(x+\dfrac{1}{12}\sin{12x}\big) + c\\
\end{align} \)


Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published.