Integration using Double Angle Formula


$$ \begin{align} \displaystyle
\cos{2x} &= 2\cos^2{x} – 1 \\
&= 1-2 \sin^2 {x} \\
&= \cos^2{x} – \sin^2{x} \\
\sin{2x} &= 2 \sin{x} \cos{x} \\
\end{align} $$

These will be expressed in the following forms in order to apply to integrate.

$$ \begin{align} \displaystyle
\sin^2 x &= \dfrac{1}{2}(1 – \cos 2x) \\
\cos^2 x &= \dfrac{1}{2}(1 + \cos 2x) \\
\sin x \cos x &= \dfrac{1}{2} \sin 2x \\
\end{align} $$

Example 1

Find $\displaystyle \int{\sin^2{x}}dx$.

Example 2

Find $\displaystyle \int{\cos^2{x}}dx$.

Example 3

Find $\displaystyle \int{\sin^2{x}}dx$.

Example 4

Find $\displaystyle \int{\cos^2{6x}}dx$.






Your email address will not be published. Required fields are marked *