# Integration using Double Angle Formula

\large \begin{align} \displaystyle \cos{2x} &= 2\cos^2{x}-1 \\ &= 1-2 \sin^2 {x} \\ &= \cos^2{x}-\sin^2{x} \\ \sin{2x} &= 2 \sin{x} \cos{x} \end{align}

These will be expressed in the following forms to apply to integration.

\large \begin{align} \displaystyle \sin^2 x &= \dfrac{1}{2}(1-\cos 2x) \\ \cos^2 x &= \dfrac{1}{2}(1 + \cos 2x) \\ \sin x \cos x &= \dfrac{1}{2} \sin 2x \end{align}

### Example 1

Find $\displaystyle \int{\sin^2{x}}dx$.

\begin{align} \displaystyle \cos{2x} &= 1-2 \sin^2{x} \\ 2 \sin^2{x} &= 1-\cos{2x} \\ \sin^2{x} &= \dfrac{1}{2}(1-\cos{2x}) \\ \int{\sin^2{x}}dx &= \dfrac{1}{2} \int{(1-\cos{2x})}dx \\ &= \dfrac{1}{2}\big(x-\dfrac{1}{2}\sin{2x}\big)+c \end{align}

### Example 2

Find $\displaystyle \int{\cos^2{x}}dx$.

\begin{align} \displaystyle \cos{2x} &= 2 \cos^2{x}-1 \\ 2 \cos^2{x} &= 1 + \cos{2x} \\ \cos^2{x} &= \dfrac{1}{2}(1 + \cos{2x}) \\ \int{\cos^2{x}}dx &= \dfrac{1}{2} \int{(1+ \cos{2x})}dx \\ &= \dfrac{1}{2}\big(x+\dfrac{1}{2}\sin{2x}\big) + c \end{align}

### Example 3

Find $\displaystyle \int{\sin^2{x}}dx$.

\begin{align} \displaystyle \cos{2x} &= 1-2 \sin^2{x} \\ 2 \sin^2{x} &= 1-\cos{2x} \\ \sin^2{x} &= \dfrac{1}{2}(1-\cos{2x}) \\ \sin^2{2x} &= \dfrac{1}{2}(1-\cos{4x}) \\ \int{\sin^2{2x}}dx &= \dfrac{1}{2} \int{(1-\cos{4x})}dx \\ &= \dfrac{1}{2}\big(x-\dfrac{1}{4}\sin{4x}\big)+c \end{align}

### Example 4

Find $\displaystyle \int{\cos^2{6x}}dx$.

\begin{align} \displaystyle \cos{2x} &= 2 \cos^2{x}-1 \\ 2 \cos^2{x} &= 1 + \cos{2x} \\ \cos^2{x} &= \dfrac{1}{2}(1 + \cos{2x}) \\ \cos^2{6x} &= \dfrac{1}{2}(1 + \cos{12x}) \\ \int{\cos^2{6x}}dx &= \dfrac{1}{2} \int{(1+ \cos{12x})}dx \\ &= \dfrac{1}{2}\big(x+\dfrac{1}{12}\sin{12x}\big) + c \end{align}

âœ“ Unlock your full learning potentialâ€”download our expertly crafted slide files for free and transform your self-study sessions!

âœ“ Discover more enlightening videos by visiting our YouTube channel!

## Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

## The Best Practices for Using Two-Way Tables in Probability

Welcome to a comprehensive guide on mastering probability through the lens of two-way tables. If you’ve ever found probability challenging, fear not. We’ll break it…

## Binomial Expansions

The sum $a+b$ is called a binomial as it contains two terms.Any expression of the form $(a+b)^n$ is called a power of a binomial. All…

## High School Math for Life: Making Sense of Earnings

Salary Salary refers to the fixed amount of money that an employer pays an employee at regular intervals, typically on a monthly or biweekly basis,…

## Factorisation Made Easy: Overcoming Harder Expressions

Factorising Cubic Expressions with Rotating Three Variables Factorising cubic expressions is a crucial skill in algebra, and it becomes even more intriguing when dealing with…