Integration of $\displaystyle \dfrac{1}{x}$
$$ \large \begin{align} \displaystyle
\dfrac{d}{dx}\log_ex &= \dfrac{1}{x} \\
\log_ex &= \int{\dfrac{1}{x}}dx \\
\therefore \int{\dfrac{1}{x}}dx &= \log_ex +c
\end{align} $$
Example 1
Find $\displaystyle \int{\dfrac{2}{x}}dx$.
\( \begin{align} \displaystyle
\int{\dfrac{2}{x}}dx &= 2\int{\dfrac{1}{x}}dx \\
&= 2\log_ex +c
\end{align} \)
Example 2
Find $\displaystyle \int{\dfrac{1}{3x}}dx$.
\( \begin{align} \displaystyle
\int{\dfrac{1}{3x}}dx &= \dfrac{1}{3}\int{\dfrac{1}{x}}dx \\
&= \dfrac{1}{3}\log_ex +c
\end{align} \)
Example 3
Find $\displaystyle \int{\dfrac{4}{5x}}dx$.
\( \begin{align} \displaystyle
\int{\dfrac{4}{5x}}dx &= \dfrac{4}{5}\int{\dfrac{1}{x}}dx \\
&= \dfrac{4}{5}\log_ex +c
\end{align} \)
Example 4
Find $\displaystyle \int{\dfrac{6}{-7x}}dx$.
\( \begin{align} \displaystyle
\int{\dfrac{6}{-7x}}dx &= -\dfrac{6}{7}\int{\dfrac{1}{x}}dx \\
&= -\dfrac{6}{7}\log_ex +c
\end{align} \)
Integration of $\displaystyle \dfrac{f'(x)}{f(x)}$
$$ \large \begin{align} \displaystyle
\dfrac{d}{dx}\log_e{f(x)} &= \dfrac{1}{f(x)} \times f'(x) \\
&= \dfrac{f'(x)}{f(x)} \\
\log_e{f(x)} &= \int{\dfrac{f'(x)}{f(x)}}dx \\
\therefore \int{\dfrac{f'(x)}{f(x)}}dx &= \log_e{f(x)} +c
\end{align} $$
Example 5
Find $\displaystyle \int{\dfrac{4}{4x-3}}dx$.
\( \begin{align} \displaystyle
\int{\dfrac{4}{4x-3}}dx &= \int{\dfrac{(4x-3)’}{4x-3}}dx \\
&= \log_e(4x-3) + c
\end{align} \)
Example 6
Find $\displaystyle \int{\dfrac{1}{2x+3}}dx$.
\( \begin{align} \displaystyle
\int{\dfrac{1}{2x+3}}dx &= \int{\dfrac{1}{2} \times \dfrac{2}{2x+3}}dx \\
&= \dfrac{1}{2} \int{\dfrac{2}{2x+3}}dx \\
&= \dfrac{1}{2} \int{\dfrac{(2x+3)’}{2x+3}}dx \\
&= \dfrac{1}{2} \log_e(2x+3) +c
\end{align} \)
Example 7
Find $\displaystyle \int{\dfrac{4}{5x+1}}dx$.
\( \begin{align} \displaystyle
\int{\dfrac{4}{5x+1}}dx &= \dfrac{4}{5}\int{\dfrac{5}{5x+1}}dx \\
&= \dfrac{4}{5}\int{\dfrac{(5x+1)’}{5x+1}}dx \\
&= \dfrac{4}{5}\log_e(5x+1) +c
\end{align} \)
Example 8
Find $\displaystyle \int{\dfrac{2x}{x^2+1}}dx$.
\( \begin{align} \displaystyle
\int{\dfrac{2x}{x^2+1}}dx &= \int{\dfrac{(x^2+1)’}{x^2+1}}dx \\
&= \log_e(x^2+1) +c
\end{align} \)
Example 9
Find $\displaystyle \int{\dfrac{x^2 + x + 1}{x}}dx$.
\( \begin{align} \displaystyle
\int{\dfrac{x^2 + x + 1}{x}}dx &= \int{\Big(\dfrac{x^2}{x} + \dfrac{x}{x} + \dfrac{1}{x}\Big)}dx \\
&= \int{\Big(x + 1 + \dfrac{1}{x}\Big)}dx \\
&= \dfrac{x^2}{2} + x +\log_ex +c
\end{align} \)

Note:
Many students made mistakes like the following:
\( \begin{align} \displaystyle
\int{\dfrac{1}{x}}dx &= \int{x^{-1}}dx = \dfrac{x^{-1+1}}{-1+1}+c = \dfrac{x^{0}}{0}+c
\end{align} \)
This is wrong and undefined, as its denominator is zero!
Please ensure $\displaystyle \int{\dfrac{1}{x}}dx=\log_ex + c$
Example 10
Find $\displaystyle \int{\dfrac{2x+1}{x+1}}dx$.
\( \begin{align} \displaystyle
\dfrac{2x+1}{x+1} &= \dfrac{2x+2-1}{x+1} \\
&= \dfrac{2(x+1)}{x+1}-\dfrac{1}{x+1} \\
&= 2-\dfrac{1}{x+1} \\
\int{\dfrac{2x+1}{x+1}}dx &= \int{\Big(2-\dfrac{1}{x+1}\Big)}dx \\
&= 2x-\log_e{(x+1)} + c
\end{align} \)
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume