Integration by Substitution

Integration by Substitution

Integration by Substitution

Integration by Substitution is performed by replacing the pronumeral (variable) with another pronumeral to simplify the expression for easier integration. Students often made mistakes by forgetting to replace the original pronumeral.

Some functions may be changed to standard forms by easy mathematical manipulation.
To aid the process of changing to a recognisable form, use it also made of substitution, which results in a change of variable. In mathematics, an important use is made of what is called differentials.
$$ \large \begin{align} \displaystyle
u &= f(x) \\
du &= \dfrac{du}{dx} \times dx
\end{align}$$

Question 1

Find \( \displaystyle \int{\frac{2x}{\sqrt{x^2-4}}}dx \).

\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
\text{Let } u &= x^2-4 \\
\frac{du}{dx} &= 2x &\color{red} \text{differentiate } u \text{ in terms of } x \\
\frac{du}{2x} &= dx &\color{red} \text{subject to } dx \\
\int{\frac{2x}{\sqrt{x^2-4}}}dx &= \int{\frac{2x}{\sqrt{u}}}\frac{du}{2x} \\
&= \int{\frac{1}{\sqrt{u}}}du \\
&= \int{u^{-\frac{1}{2}}}du \\
&= \dfrac{1}{-\frac{1}{2}+1} u^{\frac{1}{2}} + C \\
&= 2\sqrt{u} + C \\
&= 2\sqrt{x^2-4} + C
\end{aligned} \)

YouTube player

Question 2

Find \( \displaystyle \int{\frac{x^2}{\sqrt{1-x^3}}}dx \).

\( \begin{aligned} \displaystyle
\text{Let } u &= 1-x^3 \\
\frac{du}{dx} &= -3x^2 \\
\frac{du}{-3x^2} &= dx \\
\int{\frac{x^2}{\sqrt{1-x^3}}}dx &= \int{\frac{x^2}{\sqrt{u}}}\frac{du}{-3x^2} \\
&= -\frac{1}{3} \int{\frac{1}{\sqrt{u}}}du \\
&= -\frac{1}{3} \int{u^{-\frac{1}{2}}}du \\
&= -\frac{1}{3} \times \dfrac{1}{-\frac{1}{2}+1} u^{-\frac{1}{2}+1} + C \\
&= -\frac{2}{3} u^{\frac{1}{2}} + C \\
&= -\frac{2}{3} \sqrt{u} + C \\
&= -\frac{2}{3} \sqrt{1-x^3} + C
\end{aligned} \)

YouTube player

Question 3

Find \( \displaystyle \int{x\sqrt{x^2 + 2}}dx \).

\( \begin{aligned} \displaystyle
\text{Let } u &= x^2 + 2 \\
\frac{du}{dx} &= 2x \\
\frac{du}{2x} &= dx \\
\int{x\sqrt{x^2 + 2}}dx &= \int{x\sqrt{u}}\frac{du}{2x} \\
&= \frac{1}{2} \int{\sqrt{u}}du \\
&= \frac{1}{2} \int{u^{\frac{1}{2}}}du \\
&= \frac{1}{2} \times \dfrac{1}{\frac{1}{2}+1}u^{\frac{1}{2}+1} + C \\
&= \frac{1}{3} u^{\frac{3}{2}} + C \\
&= \frac{1}{3} \sqrt{u^3} + C \\
&= \frac{1}{3} \sqrt{(x^2+2)^3} + C
\end{aligned} \)

YouTube player

Question 4

Find \( \displaystyle \int{\frac{x}{\sqrt{1-x}}}dx \).

\( \begin{aligned} \displaystyle
\text{Let } u &= 1-x \\
\frac{du}{dx} &= -1 \\
dx &= -du \\
u &= 1-x \\
\int{\frac{x}{\sqrt{1-x}}}dx &= \int{\frac{1-u}{\sqrt{u}}}(-du) \\
&= \int{\frac{u-1}{\sqrt{u}}}du \\
&= \int{\frac{u}{\sqrt{u}}}du-\int{\frac{1}{\sqrt{u}}}du \\
&= \int{u^{\frac{1}{2}}}du-\int{u^{-\frac{1}{2}}}du \\
&= \dfrac{1}{\frac{1}{2}+1} u^{\frac{1}{2}+1}-\dfrac{1}{-\frac{1}{2}+1} u^{-\frac{1}{2}+1} + C \\
&= \frac{2}{3} u^{\frac{3}{2}}-2 u^{\frac{1}{2}} + C \\
&= \frac{2}{3} \sqrt{u^3}-2\sqrt{u} + C \\
&= \frac{2}{3} \sqrt{(1-x)^3}-2\sqrt{1-x} + C
\end{aligned} \)

Question 5

Find \( \displaystyle \int{x(x-1)^3}dx \).

\( \begin{aligned} \displaystyle
\text{Let } u &= x-1 \\
\frac{du}{dx} &= 1 \\
dx &= du \\
x &= u+1 \\
\int{x(x-1)^3}dx &= \int{(u+1)u^3}du \\
&= \int{u^4}du + \int{u^3}du \\
&= \frac{1}{5}u^5 + \frac{1}{4}u^4 + C \\
&= \frac{(x-1)^5}{5} + \frac{(x-1)^4}{4} + C
\end{aligned} \)

YouTube player

Question 6

Find \( \displaystyle \int{x^2(x-4)^4}dx \).

\( \begin{aligned} \displaystyle
\text{Let } u &= x-4 \\
\frac{du}{dx} &= 1 \\
dx &= du \\
x &= u+4 \\
\int{x^2(x-4)^4}dx &= \int{(u+4)^2 u^4}dx \\
&= \int{(u^2 + 8u + 16)u^4}du \\
&= \int{u^6}du + 8\int{u^5}du + 16\int{u^4}du \\
&= \frac{1}{7}u^7 + \frac{8}{6}u^6 + \frac{16}{5}u^6 + C \\
&= \frac{1}{7}(x-4)^7 + \frac{4}{3}(x-4)^6 + \frac{16}{5}(x-4)^6 + C
\end{aligned} \)

Question 7

Find $\displaystyle 2\int{\sqrt{2x+1}}dx$.

\( \begin{align} \displaystyle
\text{Let } u &= 2x+1 \\
\dfrac{du}{dx} &= 2 \\
du &= 2dx \\
2 \int{\sqrt{2x+1}}dx &= \int{\sqrt{u}}2dx \\
&= \int{u^{\frac{1}{2}}}du \\
&= \dfrac{1}{\frac{1}{2}+1}u^{\frac{1}{2}+1} +c \\
&= \dfrac{2}{3}u^{\frac{3}{2}} +c \\
&= \dfrac{2\sqrt{u^3}}{3} +c \\
&= \dfrac{2\sqrt{(2x+1)^3}}{3} +c
\end{align} \)

Question 8

Find $\displaystyle \int{x\sqrt{1+x^2}}dx$.

\( \begin{align} \displaystyle
\text{Let } u &= 1+x^2 \\
\dfrac{du}{dx} &= 2x \\
du &= 2xdx \\
\int{x\sqrt{1+x^2}}dx &= \dfrac{1}{2}\int{\sqrt{1+x^2}}2xdx \\
&= \dfrac{1}{2}\int{\sqrt{u}}du \\
&= \dfrac{1}{2}\int{u^{\frac{1}{2}}}du \\
&= \dfrac{1}{2} \times \dfrac{1}{\frac{1}{2}+1}u^{\frac{1}{2}+1} +c\\
&= \dfrac{1}{2} \times \dfrac{1}{\frac{3}{2}}u^{\frac{3}{2}} +c \\
&= \dfrac{1}{2} \times \dfrac{2}{3}u^{\frac{3}{2}} +c \\
&= \dfrac{1}{3} \sqrt{u^3} +c \\
&= \dfrac{1}{3} \sqrt{(1+x^2)^3} +c
\end{align} \)

YouTube player

Question 9

Find $\displaystyle \int{(x^2+3x)^4(2x+3)}dx$.

\( \begin{align} \displaystyle
\text{Let } u &= x^2+3x \\
\dfrac{du}{dx} &= 2x+3 \\
du &= (2x+3)dx \\
\int{(x^2+3x)^4(2x+3)}dx &= \int{u^4}du \\
&= \dfrac{1}{4+1}u^{4+1} +c \\
&= \dfrac{1}{5}u^{5} +c \\
&= \dfrac{1}{5}(x^2+3x)^{5} +c
\end{align} \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *