# Inequalities involving Absolute Values and Surds

For handling inequalities involving absolute values and surds, it is required to ensure the domains before solving inequalities. the final solutions must fit in the domains.

## Example 1

Solve for $x$, $|x| \gt \sqrt{x+2}$.

\begin{align} x+2 &\ge 0 &\color{green}{\text{domain of } \sqrt{x+2} } \\ x &\ge -2 \color{green}{\cdots (1)} \\ |x| &\gt \sqrt{x+2}^2 \\ x^2 &\gt x+2 \\ x^2-x-2 &\gt 0 \\ (x+1)(x-2) &\gt 0 \\ x &\lt -1 \text{ or } x \gt 2 \color{green}{\cdots (2)} \\ \require{AMSsymbols} \therefore -2 &\le x \lt -1 \text{ or } x \gt 2 &\color{green}{\text{Take common part of (1) and (2)}} \end{align}

## Example 2

Solve for $x$, $|4x-1| \gt 2\sqrt{x(1-x)}$.

\displaystyle \begin{align} x(1-x) &\ge 0 &\color{green}{\text{domain of } \sqrt{x(1-x)} } \\ x(x-1) &\le 0 \\ 0 &\le x \le 1 \color{green}{\cdots (1)} \\ |4x-1|^2 &\gt 2^2 \sqrt{x(1-x)}^2 \\ 16x^2 – 8x + 1 &\gt 4x(1-x) \\ 16x^2 – 8x + 1 &\gt 4x-4x^2 \\ 20x^2-12x + 1 &\gt 0 \\ (10x-1)(2x-1) &\gt 0 \\ x &\lt \frac{1}{10} \text{ or } x \gt \frac{1}{2} \color{green}{\cdots (2)} \\ \require{AMSsymbols} \therefore 0 &\le x \lt \frac{1}{10} \text{ or } \frac{1}{2} \lt x \le 1 &\color{green}{\text{Take common part of (1) and (2)}} \end{align}

Discover more enlightening videos by visiting our YouTube channel!

## Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

## High School Math for Life: Making Sense of Earnings

Salary Salary refers to the fixed amount of money that an employer pays an employee at regular intervals, typically on a monthly or biweekly basis,…

## The Best Practices for Using Two-Way Tables in Probability

Welcome to a comprehensive guide on mastering probability through the lens of two-way tables. If you’ve ever found probability challenging, fear not. We’ll break it…

## Induction Made Simple: The Ultimate Guide

“Induction Made Simple: The Ultimate Guide” is your gateway to mastering the art of mathematical induction, demystifying a powerful tool in mathematics. This ultimate guide…

## Binomial Expansions

The sum $a+b$ is called a binomial as it contains two terms.Any expression of the form $(a+b)^n$ is called a power of a binomial. All…