Index Notation

A convenient way to write a product of $\textit{identical factors}$ is to use $\textbf{exponential}$ or $\textbf{index notation}$.
Rather than writing $5 \times 5 \times 5 \times 5$, we can write this product as $5^4$.

The small $4$ is called the $\textbf{exponent}$ or $\textbf{index}$, and the $5$ is called the $\textbf{base}$.
If $n$ is a positive integer, then $a^n$ is the product of $n$ factors of $a$.
$$ \large a^n=\overbrace {a \times a \times a \times \cdots \times a}^{n} $$
We say that $a$ is the $\textbf{base}$, and $n$ is the $\textbf{exponent}$ or $\textbf{index}$.

The following table shows the first four powers of $2$.

$$ \large \begin{array}{|c|c|c|c|} \hline \textit{Natural number} & \textit{Factorised form} & \textit{Exponent form} & \textit{Spoken form} \\ \hline
2 & 2 & 2^1 & \text{two} \\ \hline
4 & 2 \times 2 & 2^2 & \text{two squared} \\ \hline
8 & 2 \times 2 \times 2 & 2^3 & \text{two cubed} \\ \hline
16 & 2 \times 2 \times 2 \times 2 & 2^4 & \text{two to the fourth} \\ \hline
\end{array} $$

Any non-zero number raised to the power zero is equal to $1$.
$$ \large a^0 = 1, a \ne 0$$
$0^0$ is undefined.

$\textbf{Negative Bases}$

\( \begin{eqnarray}
(-1)^1 &=& -1 \\
(-1)^2 &=& -1 \times -1 = 1 \\
(-1)^3 &=& -1 \times -1 \times -1 = -1 \\
(-1)^4 &=& -1 \times -1 \times -1 \times -1 = 1 \\
(-2)^1 &=& -2 \\
(-2)^2 &=& -2 \times -2 = 4 \\
(-2)^3 &=& -2 \times -2 \times -2 = -8 \\
(-2)^4 &=& -2 \times -2 \times -2 \times -2 = 16 \\
\end{eqnarray} \)

From the patterns above, we can see that:

$\textbf{negative}$ base raised to an $\textbf{even}$ exponent is $\textbf{positive}$.

$\textbf{negative}$ base raised to an $\textbf{odd}$ exponent is $\textbf{negative}$.

YouTube player

Example 1

List the first four powers of 3.

$3^1 = 3$
$3^2 = 3 \times 3 = 9$
$3^3 = 3 \times 3 \times 3 = 27$
$3^4 = 3 \times 3 \times 2 \times 3 = 81$

YouTube player

Example 2

Simplify $(-1)^{17}$.

$(-1)^{17} = -1$

YouTube player

Example 3

Simplify $(-1)^{18}$.

$(-1)^{18} = 1$

YouTube player

Example 4

Simplify $5^0$.

$5^0 = 1$

YouTube player

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published. Required fields are marked *