Indefinite Integral of Rational Functions

Indefinite Integral of Rational Functions

Understanding the Indefinite Integral of Rational Functions

Using Indefinite Integral of Rational Functions requires that the format of the expression must be the power of linear expressions, such as \( (3x-1)^3, (2x+3)^3, \sqrt{4x-1} \), etc. \( (3x^2-1)^3, (2\sqrt{x}+3)^3, \sqrt{4x^3-1} \) are not applicable for this formula.
$$ \large \displaystyle \int{(ax+b)^n}dx = \dfrac{(ax+b)^{n+1}}{a(n+1)} + C \ (n \ne-1)$$

YouTube player

Practice Questions

Question 1

Find \( \displaystyle \int{(2x-1)^3}dx \).

\( \begin{aligned} \displaystyle
\int{(2x-1)^3}dx &= \dfrac{(2x-1)^{3+1}}{2(3+1)} + C \\
&= \frac{1}{8}(2x-1)^4 + C
\end{aligned} \)

Question 2

Find \( \displaystyle \int{\sqrt{3x+2}}dx \).

\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
\int{\sqrt{3x+2}}dx &= \int{(3x+2)^{\frac{1}{2}}}dx &\color{red} \text{convert to index form} \\
&= \dfrac{(3x+2)^{\frac{1}{2}+1}}{3\big(\frac{1}{2}+1\big)} + C \\
&= \dfrac{(3x+2)^{\frac{3}{2}}}{\frac{9}{2}} + C \\
&= \frac{2}{9}\sqrt{(3x+2)^3} + C &\color{red} \text{don’t forget to convert back to radical form}
\end{aligned} \)

Question 3

Find \( \displaystyle \int{\frac{1}{(5x+4)^2}}dx \).

\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
\int{\frac{1}{(5x+4)^2}}dx &= \int{(5x+4)^{-2}}dx &\color{red} \text{convert to index form} \\
&= \dfrac{(5x+4)^{-2+1}}{5(-2+1)} + C \\
&= -\dfrac{(5x+4)^{-1}}{5} + C \\
&= -\frac{1}{5(5x+4)} + C &\color{red} \text{convert to positive index}
\end{aligned} \)

Question 4

Find \( \displaystyle \int{\frac{1}{\sqrt{6x-1}}}dx \).

\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
\int{\frac{1}{\sqrt{6x-1}}}dx &= \int{(6x-1)^{-\frac{1}{2}}}dx &\color{red} \text{convert to index form} \\
&= \dfrac{(6x-1)^{-\frac{1}{2}+1}}{6(-\frac{1}{2}+1)} + C \\
&= \dfrac{(6x-1)^{\frac{1}{2}}}{3} + C \\
&= \frac{1}{3}\sqrt{6x-1} + C &\color{red} \text{convert back to radical form}
\end{aligned} \)

Question 5

Find \( \displaystyle \int{\sqrt[3]{(2-3x)^4}}dx \).

\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
\int{\sqrt[3]{(2-3x)^4}}dx &= \int{(2-3x)^{\frac{4}{3}}}dx &\color{red} \text{convert to index form} \\
&= \dfrac{(2-3x)^{\frac{4}{3}+1}}{-3\big(\frac{4}{3}+1\big)} + C \\
&= \dfrac{(2-3x)^{\frac{7}{3}}}{-7} + C \\
&= -\frac{1}{7} \sqrt[3]{(2-3x)^{7}} + C &\color{red} \text{convert back to radical form} \\
\end{aligned} \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *