Indefinite Integral Formula

Basics of Indefinite Integral Formula

An indefinite Integral Formula has been made from the reverse operations of differentiation or anti-differentiation.
\( \begin{aligned} \displaystyle
\frac{d}{dx}x^3 &= 3x^2 &\Rightarrow \int{3x^2}dx &= x^3 \\
\frac{d}{dx}(x^3 + 4) &= 3x^2 &\Rightarrow \int{3x^2}dx &= x^3 + 4 \\
\frac{d}{dx}(x^3-2) &= 3x^2 &\Rightarrow \int{3x^2}dx &= x^3-2
\end{aligned} \)

The general formula of indefinite integral is; $$ \large \int{x^n}dx = \frac{x^{n+1}}{n+1} + C $$

YouTube player

Practice Questions

Question 1

Find \( \displaystyle \int{4}dx \).

\( \begin{aligned} \displaystyle \require{color}
\int{4}dx &= \int{4 \times 1}dx \\
&= \int{4 \times x^0}dx \\
&= \frac{4x^{0+1}}{0+1} + C \\
&= 4x + C &\color{red} \text{don’t forget to have }+C
\end{aligned} \)

Question 2

Find \( \displaystyle \int{2x}dx \).

\( \begin{aligned} \displaystyle
\int{2x}dx &= \frac{2x^{1+1}}{1+1} + C \\
&= x^2 +C
\end{aligned} \)

Question 3

Find \( \displaystyle \int{\frac{4x^3}{3}}dx \).

\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
\int{\frac{4x^3}{3}}dx &= \frac{4}{3} \int{x^3} dx &\color{red} \text{always a great idea to take our the coefficient} \\
&= \frac{4}{3} \times \frac{x^{3+1}}{3+1} +C &\color{red} \text{then perform the usual integration} \\
&= \frac{x^4}{3} + C
\end{aligned} \)

Question 4

Find \( \displaystyle \int{(3x^2 + 2x + 4)}dx \).

\( \begin{aligned} \displaystyle
\int{(3x^2 + 2x + 4)}dx &= \frac{3x^{2+1}}{2+1} + \frac{2x^{1+1}}{1+1} + 4x +C \\
&= x^3 + x^2 + 4x + C
\end{aligned} \)

Question 5

Find \( \displaystyle \int{\frac{3}{2x^2}}dx \).

\( \begin{aligned} \displaystyle \require{color}
\int{\frac{3}{2x^2}}dx &= \frac{3}{2} \int{\frac{1}{x^2}}dx \\
&= \frac{3}{2} \int{x^{-2}}dx &\color{red} \text{make it integratable} \\
&= \frac{3}{2} \times \frac{x^{-2+1}}{-2+1} + C \\
&= \frac{3}{2} \times \frac{x^{-1}}{-1} + C \\
&= -\frac{3}{2x} + C &\color{red} \text{always leave your final answer in positive index}
\end{aligned} \)

Question 6

Find \( \displaystyle \int{\frac{6x^3+2x^2-3x}{x}}dx \).

\( \begin{aligned} \displaystyle \require{color}
\int{\frac{6x^3+2x^2-3x}{x}}dx &= \int{\Big(\frac{6x^3}{x} + \frac{2x^2}{x}-\frac{3x}{x}\Big)}dx &\color{red} \text{separate into single fractions} \\
&= \int{(6x^2+2x-3)}dx \\
&= \frac{6x^{2+1}}{2+1} + \frac{2x^{1+1}}{1+1}-3x + C \\
&= 2x^3 + x^2-3x + C
\end{aligned} \)

Question 7

Find \( \displaystyle \int{x(x-2)}dx \).

\( \begin{aligned} \displaystyle \require{color}
\int{x(x-2)}dx &= \int{(x^2-2x)}dx &\color{red} \text{expand} \\
&= \dfrac{x^{2+1}}{2+1}-\dfrac{2x^{1+1}}{1+1} + C \\
&= \frac{x^3}{3}-x^2 + C
\end{aligned} \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published. Required fields are marked *