# Implicit Differentiation

This very powerful differentiation process follows from the chain rule.
$$u = g(f(x)) \ \frac{du}{dx} = g'(f(x)) \times f'(x)$$
We’ve done quite a few differentiation and derivatives, but all have been the differentiation of functions of the form $y = f(x)$. Not all functions will fall into this simple form. The process that we are going to cover is called implicit differentiation.
The following examples require the use of implicit differentiation. The essential skill of implicit differentiation is a special case of the chain rule for derivatives. Let’s take a look at them now!

### Question 1

Find $\dfrac{dy}{dx}$ for $xy = 1$.

\begin{aligned} \displaystyle \require{AMSsymbols} \require{color} \frac{d}{dx}xy &= \frac{d}{dx}1 \\ \frac{d}{dx}x \times y + x \times \frac{d}{dx}y &= 0 &\color{red} \text{product rule}\\ 1 \times y + x\frac{dy}{dx} &= 0 \\ y + x\frac{dy}{dx} &= 0 \\ x\frac{dy}{dx} &= -y \\ \therefore \frac{dy}{dx} &= -\frac{y}{x} \end{aligned}

### Question 2

Find $\dfrac{dy}{dx}$ for $x^2 + y^2 = 1$.

\begin{aligned} \displaystyle \require{AMSsymbols} \require{color} \frac{d}{dx}x^2 + \frac{d}{dx}y^2 &= \frac{d}{dx}1 \\ 2x + 2y \times \frac{dy}{dx} &= 0 &\color{red} \text{chain rule}\\ 2y \times \frac{dy}{dx} &= -2x \\ \frac{dy}{dx} &= -\frac{2x}{2y} \\ \therefore \frac{dy}{dx} &= -\frac{x}{y} \end{aligned}

### Question 3

Find $\dfrac{dy}{dx}$ for $x^4y^5 = y + 1$.

\begin{aligned} \displaystyle \frac{d}{dx}x^4 \times y^5 + x^4 \times \frac{d}{dx} y^5 &= \frac{d}{dx}y + \frac{d}{dx}1 \\ 4x^3y^5 + x^4 \times 5y\frac{dy}{dx} &= \frac{dy}{dx} + 0 \\ 4x^3y^5 + 5x^4y\frac{dy}{dx} &= \frac{dy}{dx} \\ 5x^4y\frac{dy}{dx} – \frac{dy}{dx} &= -4x^3y^5 \\ (5x^4y -1)\frac{dy}{dx} &= -4x^3y^5 \\ \therefore \frac{dy}{dx} &= -\frac{4x^3y^5}{5x^4y -1} \end{aligned}

### Question 4

Find $\dfrac{dy}{dx}$ for $\sin{y} = x$.

\begin{aligned} \displaystyle \frac{d}{dx} \sin{y} &= \frac{d}{dx}x \\ \cos{y} \times \frac{dy}{dx} &= 1 \\ \therefore \frac{dy}{dx} &= \frac{1}{\cos{y}} \end{aligned}

### Question 5

Differentiate $\cos{xy}$ in terms of $x$.

\begin{aligned} \displaystyle \frac{d}{dx} \cos{xy} &= – \sin{xy} \times \frac{d}{dx}xy \\ &= -\sin{xy} \times \Big(\frac{d}{dx}x \times y + x \times \frac{d}{dx}y\Big) \\ &= -\sin{xy} \times \Big(y + x\frac{dy}{dx}\Big) \end{aligned}

### Question 6

Find $\dfrac{dy}{dx}$ for $\cos^2{x} + \cos^2{y} = \cos{(x+y)}$.

\begin{aligned} \displaystyle \require{AMSsymbols} \require{color} \frac{d}{dx}\cos^2{x} + \frac{d}{dx}\cos^2{y} &= \frac{d}{dx}\cos{(x+y)} \\ 2 \cos{x} \times \frac{d}{dx} \cos{x} + 2 \cos{y} \times \frac{d}{dx}\cos{y} &= -\sin{(x+y)} \times \frac{d}{dx}(x+y)\\ 2 \cos{x} \times (-\sin{x}) + 2 \cos{y} \times (- \sin{y}) \times \frac{dy}{dx} &= -\sin{(x+y)} \times \Big(1+\frac{dy}{dx}\Big) \\ -2 \sin{x} \cos{x}-2 \sin{y} \cos{y} \frac{dy}{dx} &= -\sin{(x+y)}-\sin{(x+y)} \frac{dy}{dx} \\ \sin{(x+y)} \frac{dy}{dx}-2 \sin{y} \cos{y} \frac{dy}{dx} &= 2 \sin{x} \cos{x}-\sin{(x+y)} \\ \left[\sin{(x+y)}-2 \sin{y} \cos{y}\right] \frac{dy}{dx} &= 2 \sin{x} \cos{x}-\sin{(x+y)} \\ \therefore \frac{dy}{dx} &= \frac{2 \sin{x} \cos{x}-\sin{(x+y)}}{\sin{(x+y)}-2 \sin{y} \cos{y}} \end{aligned}

Discover more enlightening videos by visiting our YouTube channel!

## Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

## High School Math for Life: Making Sense of Earnings

Salary Salary refers to the fixed amount of money that an employer pays an employee at regular intervals, typically on a monthly or biweekly basis,…

## The Best Practices for Using Two-Way Tables in Probability

Welcome to a comprehensive guide on mastering probability through the lens of two-way tables. If you’ve ever found probability challenging, fear not. We’ll break it…

## Trigonometry Made Easy: Integration by Parts Demystified

Integration by Parts is made of the product rule of differentiation. The derivative of $uv$ is $u’v + uv’$ and integrates both sides. \( \begin{aligned}…

## Binomial Expansions

The sum $a+b$ is called a binomial as it contains two terms.Any expression of the form $(a+b)^n$ is called a power of a binomial. All…