# How to Simplify a Binomial Expansion using Differentiation

Navigating the intricacies of binomial expansions in mathematics can sometimes feel like treading through a complex labyrinth. However, fear not, as we are about to embark on a journey that will unravel the secrets of simplifying binomial expansions with the powerful tool of differentiation. Binomial expansions are fundamental in various fields of mathematics and science, and the ability to simplify them can significantly streamline problem-solving processes. In this guide, we will delve into the step-by-step process of simplifying binomial expansions using differentiation, empowering you to tackle mathematical challenges with confidence and precision. Whether you’re a student looking to ace your exams or a math enthusiast seeking a deeper understanding, this tutorial will equip you with valuable skills to make binomial expansions more manageable and intuitive. So, let’s embark on this mathematical adventure and discover the art of simplifying binomial expansions through differentiation.

Simplifying a binomial expansion using differentiation is a calculus technique to find a more concise form of a two-term equation. This method, often referred to as ‘binomial expansion by differentiation,’ involves taking the derivative of the expanded expression. It’s a powerful tool for making complex expressions more manageable and is particularly useful in mathematical analysis and problem-solving.

## Example

Show that $\displaystyle \begin{pmatrix} n \\ 2 \end{pmatrix} 2^2 + \begin{pmatrix} n \\ 4 \end{pmatrix} 4^2 + \begin{pmatrix} n \\ 6 \end{pmatrix} 6^2 + \cdots + \begin{pmatrix} n \\ n \end{pmatrix} n^2 = n(n+1) 2^{n-3}$, for $n \ge 4$ and assuming that $n$ is even.

\displaystyle \begin{align} \begin{pmatrix} n \\ 0 \end{pmatrix} + \begin{pmatrix} n \\ 1 \end{pmatrix} x + \begin{pmatrix} n \\ 2 \end{pmatrix} x^2 + \begin{pmatrix} n \\ 3 \end{pmatrix} x^3 + \begin{pmatrix} n \\ 4 \end{pmatrix} x^4 + \cdots + \begin{pmatrix} n \\ n \end{pmatrix} x^n &= (1+x)^{n} \\ &\text{binomial expansion} \\ \begin{pmatrix} n \\ 1 \end{pmatrix} + \begin{pmatrix} n \\ 2 \end{pmatrix} 2x + \begin{pmatrix} n \\ 3 \end{pmatrix} 3x^2 + \begin{pmatrix} n \\ 4 \end{pmatrix} 4x^3 + \cdots + \begin{pmatrix} n \\ n \end{pmatrix} nx^{n-1} &= n(1+x)^{n-1} \\ &\text{differentiate} \\ \begin{pmatrix} n \\ 1 \end{pmatrix} x + \begin{pmatrix} n \\ 2 \end{pmatrix} 2x^2 + \begin{pmatrix} n \\ 3 \end{pmatrix} 3x^3 + \begin{pmatrix} n \\ 4 \end{pmatrix} 4x^4 + \cdots + \begin{pmatrix} n \\ n \end{pmatrix} nx^{n} &= nx(1+x)^{n-1} \\ &\text{multiply } x \text{ both sides} \\ \begin{pmatrix} n \\ 1 \end{pmatrix} + \begin{pmatrix} n \\ 2 \end{pmatrix} 2^2x + \begin{pmatrix} n \\ 3 \end{pmatrix} 3^2x^2 + \begin{pmatrix} n \\ 4 \end{pmatrix} 4^2x^3 + \cdots + \begin{pmatrix} n \\ n \end{pmatrix} n^2x^{n-1} &= n(n-1)x(1+x)^{n-2}+n(1+x)^{n-1} \\ &\text{differentiate} \\ &= n(1+x)^{n-2}\left[ x(n-1)+(1+x) \right] \\ &= n(1+x)^{n-2}(nx-x+1+x) \\ &= n(nx+1)(1+x)^{n-2} \cdots (1) \\ \begin{pmatrix} n \\ 1 \end{pmatrix} + \begin{pmatrix} n \\ 2 \end{pmatrix} 2^2 + \begin{pmatrix} n \\ 3 \end{pmatrix} 3^2 + \begin{pmatrix} n \\ 4 \end{pmatrix} 4^2 + \cdots + \begin{pmatrix} n \\ n \end{pmatrix} n^2 &= n(n+1)2^{n-2} \cdots (2) \\ &x=1 \text{ into } (1) \\ \begin{pmatrix} n \\ 1 \end{pmatrix}-\begin{pmatrix} n \\ 2 \end{pmatrix} 2^2 + \begin{pmatrix} n \\ 3 \end{pmatrix} 3^2-\begin{pmatrix} n \\ 4 \end{pmatrix} 4^2 + \cdots + (-1)^{n-1} \begin{pmatrix} n \\ n \end{pmatrix} n^2 &= n(-n+1)(1-1)^{n-2} \\ &x=-1 \text{ into } (1) \\ \begin{pmatrix} n \\ 1 \end{pmatrix}-\begin{pmatrix} n \\ 2 \end{pmatrix} 2^2 + \begin{pmatrix} n \\ 3 \end{pmatrix} 3^2-\begin{pmatrix} n \\ 4 \end{pmatrix} 4^2 + \cdots-\begin{pmatrix} n \\ n \end{pmatrix} n^2 &= 0 \cdots (3) \\ &n-1 \text{ is odd, thus } (-1)^{n-1}=-1 \\ 2 \begin{pmatrix} n \\ 2 \end{pmatrix}2^2 + 2\begin{pmatrix} n \\ 4 \end{pmatrix} 4^2 + 2\begin{pmatrix} n \\ 6 \end{pmatrix} 6^2 + \cdots + 2\begin{pmatrix} n \\ n \end{pmatrix} n^2 &= n(n+1)2^{n-2} \\ \therefore \begin{pmatrix} n \\ 2 \end{pmatrix}2^2 + \begin{pmatrix} n \\ 4 \end{pmatrix} 4^2 + \begin{pmatrix} n \\ 6 \end{pmatrix} 6^2 + \cdots + \begin{pmatrix} n \\ n \end{pmatrix} n^2 &= n(n+1)2^{n-3} \end{align}

## Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

## Induction Made Simple: The Ultimate Guide

“Induction Made Simple: The Ultimate Guide” is your gateway to mastering the art of mathematical induction, demystifying a powerful tool in mathematics. This ultimate guide…

## The Best Practices for Using Two-Way Tables in Probability

Welcome to a comprehensive guide on mastering probability through the lens of two-way tables. If you’ve ever found probability challenging, fear not. We’ll break it…

## Proof by Differentiating Binomial Expansions

Part 1 Show that for all positive integers $n$, \( x \left[ (1+x)x^{n-1} + (1+x)^{n-2} + \cdots + (1+x)^2 + (1+x) +1 \right]…

## High School Math for Life: Making Sense of Earnings

Salary Salary refers to the fixed amount of money that an employer pays an employee at regular intervals, typically on a monthly or biweekly basis,…