The inverse function of \( y=e^x \) is \( y=\log_{e}{x} \). Therefore \( y=\log_{e}{x} \) is an inverse function, it is a reflection of \( y=e^x \) in the line \( y=x \).

\begin{array}{|c|c|c|} \require{AMSsymbols} \require{color} \hline
& y=e^x & \color{red}y =\log_{e}{x} \\ \hline
\text{domain} & x \in \mathbb{R} & \color{red}x \gt 0 \\ \hline
\text{range} & y \gt 0 & \color{red}y \in \mathbb{R} \\ \hline
\text{asymptote} & horizontal\ y=0 & \color{red}vertical\ x=0 \\ \hline
\text{fixed point} & (0,1) & \color{red}(1,0) \\ \hline
\end{array}
Example 1
Sketch graphs of \( y=\log_{e}{x} \) and \( y=\log_{e}{(2x)} \).

Example 2
Sketch graphs of \( y=\log_{e}{x} \) and \( y=2\log_{e}{x} \).

Example 3
Sketch graphs of $y=\log_{e}{x}$ and $y=\log_{e}{(-x)}$.
Reflected by $y$-axis.

Example 4
Sketch graphs of $y=\log_{e}{x}$ and $y=-\log_{e}{x}$.
Reflected by $x$-axis.

Example 5
Sketch graphs of $y=\log_{e}{x}$ and $y=\log_{e}{(x+1)}$.
Shifting to the left side by $1$ unit.

Example 6
Sketch graphs of $y=\log_{e}{x}$ and $y=\log_{e}{x}+1$.
Moving up by $1$ unit.

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume