Graphing Logarithmic Functions

The inverse function of $y=a^x$ is $y=\log_{a}{x}$. Therefore $y=\log_{a}{x}$ is an inverse function, it is a reflection of $y=a^x$ in the line $y=x$.


\begin{array}{|c|c|c|} \require{AMSsymbols} \require{color} \hline
& y=a^x & \color{red}y =\log_{a}{x} \\ \hline
\text{domain} & x \in \mathbb{R} & \color{red}x \gt 0 \\ \hline
\text{range} & y \gt 0 & \color{red}y \in \mathbb{R} \\ \hline
\text{asymptote} & horizontal\ y=0 & \color{red}vertical\ x=0 \\ \hline
\text{fixed point} & (0,1) & \color{red}(1,0) \\ \hline
\end{array}
Example 1
(a) Sketch the graphs of $y=\log_{2}{x}$ and $y=\log_{2}{(x+1)}$.
Shift to the left side by $1$ unit.

(b) Sketch the graphs of $y=\log_{2}{x}$ and $y=\log_{2}{x-2}$.
Shift down by $2$ units.

(c) Sketch the graphs of $y=\log_{2}{x}$ and $y=\log_{2}{(x+1)-2}$.
Shift to the left side by $1$ and down by $2$ units.

(d) Find the domain of $y = \log_{2}{(x+1)}-2$.
\( \begin{align} \displaystyle
x + 1 &\gt 0 \\
\therefore x &\gt -1 \\
\end{align} \)
(e) Find the range of $y = \log_{2}{(x+1)}-2$.
$x \in \mathbb{R}$ or all real $x$
(f) Find any asymptote(s) of $y = \log_{2}{(x+1)}-2$.
\( \begin{align} \displaystyle
x + 1 &= 0 \\
\therefore x &= -1 \\
\end{align} \)
(g) Find any $x$-intercept(s) of $y = \log_{2}{(x+1)}-2$.
\( \begin{align} \displaystyle \require{color}
\log_{2}{(x+1)}-2 &= 0 &\color{red}y=0 \\
\log_{2}{(x+1)} &= 2 \\
x+1 &= 2^2 \\
x+1 &= 4 \\
x &= 3 \\
\therefore (3,0) \\
\end{align} \)
(h) Find any $y$-intercept(s) of $y = \log_{2}{(x+1)}-2$.
\( \begin{align} \displaystyle
y &= \log_{2}{(0+1)}-2 &\color{red}x=0 \\
y &= \log_{2}{1}-2 \\
y &= 0-2 \\
y &= -2 \\
\therefore (0,-2) \\
\end{align} \)
Example 2
Sketch the graphs of $y=\log_{2}{x}$ and $y=3\log_{2}{x}$.

Example 3
Sketch the graphs of $y=\log_{2}{x}$ and $y=\log_{2}{(3x)}$.

Example 4
Sketch the graphs of $y=\log_{2}{x}$ and $y=-\log_{2}{x}$.

Example 5
Sketch the graphs of $y=\log_{2}{x}$ and $y=\log_{2}{(-x)}$.

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume
Responses