Geometric Series

A $\textit{geometric series}$ is the sum of the terms of a geometric sequence.
for example:

  • $1, 2, 4, 8, \cdots , 2048$ is a finite geometric sequence.
  • $1+2+4+8+ \cdots +2048$ is the corresponding finite geometric series.
Geometric Series

If we are adding the first $n$ terms of an infinite geometric sequence, we are then calculating a finite geometric series called the $n$th partial sum of the corresponding infinite series.

If we are adding all of the terms in a geometric sequence which goes on and on forever, we have an infinite geometric series.

\( \begin{align} \displaystyle \require{color}
S_n &= u_1 + u_2 + u_3 + \cdots + u_{n-1} + u_{n} \\
&= u_1 + u_1r + u_1r^2 + \cdots + u_1r^{n-2} + u_1r^{n-1} \\
&= \dfrac{u_1(r^n – 1)}{r-1} \text{ or } \dfrac{u_1(1 – r^n)}{1-r}\\
\end{align} \)
Ensure $r \ne 1$.

Proof of Geometric Series Formula

\( \begin{align} \displaystyle \require{color}
S_n &= u_1 + u_1r + u_1r^2 + \cdots + u_1r^{n-2} + u_1r^{n-1} \\
rS_n &= u_1r + u_1r^2 + u_1r^3 + \cdots + u_1r^{n-1} + u_1r^{n} \\
rS_n &= (\color{red}u_1 \color{black} + u_1r + u_1r^2 + u_1r^3 + \cdots + u_1r^{n-1}) + u_1r^{n} – \color{red}u_1 \\
rS_n &= S_n + u_1r^n – u_1 \\
r S_n – S_n &= u_1r^n – u_1 \\
S_n(r-1) &= u_1(r^n – 1) \\
\therefore S_n &= \dfrac{u_1(r^n – 1)}{r-1} \\
\end{align} \)

Example 1

Find the sum of $3+6+12+\cdots$ to $8$ terms.

\( \begin{align} \displaystyle
u_1 &= 3 \\
r &= 2 \\
n &= 8 \\
S_8 &= \dfrac{3(2^8-1)}{2-1} \\
&= 765 \\
\end{align} \)

Example 2

Find the sum of $0.2+0.02+0.002+\cdots$ of the first $n$ terms.

\( \begin{align} \displaystyle
u_1 &= 0.2 \\
r &= 0.1 \\
n &= n \\
S_n &= \dfrac{0.2(0.1^n-1)}{0.1-1} \\
&= \dfrac{2(1-0.1^n)}{9} \\
\end{align} \)

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Divisibility Proof Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume

 



Your email address will not be published. Required fields are marked *