Geometric Series

Geometric Series

A $\textit{geometric series}$ is the sum of the terms of a geometric sequence.
for example:

  • $1, 2, 4, 8, \cdots , 2048$ is a finite geometric sequence.
  • $1+2+4+8+ \cdots +2048$ is the corresponding finite geometric series.

If we add the first $n$ terms of an infinite geometric sequence, we calculate a finite geometric series called the $n$th partial sum of the corresponding infinite series.

We have an infinite geometric series if we add all of the terms in a geometric sequence that goes on and on forever.

\( \begin{align} \displaystyle \require{color}
S_n &= u_1 + u_2 + u_3 + \cdots + u_{n-1} + u_{n} \\
&= u_1 + u_1r + u_1r^2 + \cdots + u_1r^{n-2} + u_1r^{n-1} \\
&= \dfrac{u_1(r^n-1)}{r-1} \text{ or } \dfrac{u_1(1-r^n)}{1-r}\\
\end{align} \)
Ensure $r \ne 1$.

Proof of Geometric Series Formula

\( \begin{align} \displaystyle \require{AMSsymbols} \require{color}
S_n &= u_1 + u_1r + u_1r^2 + \cdots + u_1r^{n-2} + u_1r^{n-1} \\
rS_n &= u_1r + u_1r^2 + u_1r^3 + \cdots + u_1r^{n-1} + u_1r^{n} \\
rS_n &= (\color{red}u_1 \color{black} + u_1r + u_1r^2 + u_1r^3 + \cdots + u_1r^{n-1}) + u_1r^{n} – \color{red}u_1 \\
rS_n &= S_n + u_1r^n-u_1 \\
r S_n – S_n &= u_1r^n-u_1 \\
S_n(r-1) &= u_1(r^n-1) \\
\therefore S_n &= \dfrac{u_1(r^n-1)}{r-1}
\end{align} \)

Example 1

Find the sum of $3+6+12+\cdots$ to $8$ terms.

\( \begin{align} \displaystyle
u_1 &= 3 \\
r &= 2 \\
n &= 8 \\
S_8 &= \dfrac{3(2^8-1)}{2-1} \\
&= 765
\end{align} \)

Example 2

Find the sum of $0.2+0.02+0.002+\cdots$ of the first $n$ terms.

\( \begin{align} \displaystyle
u_1 &= 0.2 \\
r &= 0.1 \\
n &= n \\
S_n &= \dfrac{0.2(0.1^n-1)}{0.1-1} \\
&= \dfrac{2(1-0.1^n)}{9}
\end{align} \)

Unlock your full learning potential—download our expertly crafted slide files for free and transform your self-study sessions!

Discover more enlightening videos by visiting our YouTube channel!

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Related Articles

Responses

Your email address will not be published. Required fields are marked *