# General Binomial Theorem

\begin{align} \displaystyle (a+b)^n &= \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + \cdots + \binom{n}{k}a^{n-k}b^{k} + \cdots + \binom{n}{n}a^{0}b^{n} \\ &= \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^{k} \end{align}

\begin{align} \displaystyle 1^{\text{st}} \text{ term } T_1 &= \binom{n}{0}a^nb^0 \\ 2^{\text{nd}} \text{ term } T_2 &= \binom{n}{1}a^{n-1}b^1 \\ 3^{\text{rd}} \text{ term } T_3 &= \binom{n}{2}a^{n-2}b^2 \\ &\vdots \\ k^{\text{th}} \text{ term } T_k &= \binom{n}{k-1}a^{n-(k-1)}b^{k-1} \\ (k+1)^{\text{th}} \text{ term } T_{k+1} &= \binom{n}{k}a^{n-k}b^{k} \end{align}

We call $\displaystyle (k+1)^{\text{th}} \text{ term } T_{k+1} = \binom{n}{k}a^{n-k}b^{k}$ as the General Term.

### Example 1

Expand $(2x+3)^5$.

\begin{align} \displaystyle (2x+3)^5 &= \binom{5}{0}(2x)^53^0 + \binom{5}{1}(2x)^43^1 + \binom{5}{2}(2x)^33^2 + \binom{5}{3}(2x)^23^3 + \binom{5}{4}(2x)^13^4 + \binom{5}{5}(2x)^03^5 \\ &= 2^5x^5 + 5 \times 2^4x^4 \times 3 + 10 \times 2^3x^3 \times 9 + 10 \times 2^2x^2 \times 27 + 5 \times 2x \times 81 + 243 \\ &= 32x^5 + 240x^4 + 720x^3 + 1080x^2 + 810x + 243 \end{align}

### Example 2

Write down $5$th term of the expansion of $\displaystyle \Big(2x+\dfrac{1}{x}\Big)^{12}$.

\begin{align} \displaystyle T_5 &= T_{4+1} \\ &= \binom{12}{4}(2x)^8 \Big(\dfrac{1}{x}\Big)^4 \\ &= 495 \times 256x^8 \times \dfrac{1}{x^4} \\ &= 126720x^4 \end{align}

### Example 3

Find the coefficient of $x^6$ in the expansion of $\displaystyle\Big(x^2+\dfrac{4}{x}\Big)^{12}$.

\begin{align} \displaystyle T_{k+1} &= \binom{12}{k}(x^2)^{12-k}\Big(\dfrac{4}{x}\Big)^k \\ &= \binom{12}{k}x^{24-2k}\dfrac{4^k}{x^k} \\ &= \binom{12}{k}4^k x^{24-2k-k} \\ &= \binom{12}{k}4^k x^{24-3k} \\ 24-3k &= 6 \\ 3k &= 18 \\ k &= 6 \\ T_{6+1} &= \binom{12}{6}4^6x^6 \\ &= 3784704 \end{align}
Therefore the coefficient of $x^6$ is $3784704$.

### Example 4

Find the constant term in the expansion of $\displaystyle\Big(2x^3+\dfrac{1}{x}\Big)^{12}$.

\begin{align} \displaystyle \require{AMSsymbols} \require{color} T_{k+1} &= \binom{12}{k}(2x^3)^{12-k}\Big(\dfrac{1}{x}\Big)^k \\ &= \binom{12}{k}2^{12-k}x^{36-3k}\Big(\dfrac{1}{x^k}\Big) \\ &= \binom{12}{k}2^{12-k}x^{36-3k-k} \\ &= \binom{12}{k}2^{12-k}x^{36-4k} \\ 36-4k &= 0 &\color{red}\text{constant term}\\ k &= 9 \\ T_{9+1} &= \binom{12}{9}2^{12-9}x^0 \\ &= 1760 \end{align}
Therefore the constant term is $1760$.

âœ“ Discover more enlightening videos by visiting our YouTube channel!

## Mastering Integration by Parts: The Ultimate Guide

Welcome to the ultimate guide on mastering integration by parts. If you’re a student of calculus, you’ve likely encountered integration problems that seem insurmountable. That’s…

## The Best Practices for Using Two-Way Tables in Probability

Welcome to a comprehensive guide on mastering probability through the lens of two-way tables. If you’ve ever found probability challenging, fear not. We’ll break it…

## High School Math for Life: Making Sense of Earnings

Salary Salary refers to the fixed amount of money that an employer pays an employee at regular intervals, typically on a monthly or biweekly basis,…

## Binomial Expansions

The sum $a+b$ is called a binomial as it contains two terms.Any expression of the form $(a+b)^n$ is called a power of a binomial. All…

## Induction Made Simple: The Ultimate Guide

“Induction Made Simple: The Ultimate Guide” is your gateway to mastering the art of mathematical induction, demystifying a powerful tool in mathematics. This ultimate guide…