General Binomial Theorem

\( \begin{align} \displaystyle
(a+b)^n &= \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + \cdots + \binom{n}{k}a^{n-k}b^{k} + \cdots + \binom{n}{n}a^{0}b^{n} \\
&= \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^{k} \\
\end{align} \)

\( \begin{align} \displaystyle
1^{\text{st}} \text{ term } T_1 &= \binom{n}{0}a^nb^0 \\
2^{\text{nd}} \text{ term } T_2 &= \binom{n}{1}a^{n-1}b^1 \\
3^{\text{rd}} \text{ term } T_3 &= \binom{n}{2}a^{n-2}b^2 \\
&\vdots \\
k^{\text{th}} \text{ term } T_k &= \binom{n}{k-1}a^{n-(k-1)}b^{k-1} \\
(k+1)^{\text{th}} \text{ term } T_{k+1} &= \binom{n}{k}a^{n-k}b^{k} \\
\end{align} \)

We call $\displaystyle (k+1)^{\text{th}} \text{ term } T_{k+1} = \binom{n}{k}a^{n-k}b^{k}$ as the General Term.

Example 1

Expand $(2x+3)^5$.

\( \begin{align} \displaystyle
(2x+3)^5 &= \binom{5}{0}(2x)^53^0 + \binom{5}{1}(2x)^43^1 + \binom{5}{2}(2x)^33^2 + \binom{5}{3}(2x)^23^3 + \binom{5}{4}(2x)^13^4 + \binom{5}{5}(2x)^03^5 \\
&= 2^5x^5 + 5 \times 2^4x^4 \times 3 + 10 \times 2^3x^3 \times 9 + 10 \times 2^2x^2 \times 27 + 5 \times 2x \times 81 + 243 \\
&= 32x^5 + 240x^4 + 720x^3 + 1080x^2 + 810x + 243 \\
\end{align} \)

Example 2

Write down $5$th term of the expansion of $\displaystyle \Big(2x+\dfrac{1}{x}\Big)^{12} $.

\( \begin{align} \displaystyle
T_5 &= T_{4+1} \\
&= \binom{12}{4}(2x)^8 \Big(\dfrac{1}{x}\Big)^4 \\
&= 495 \times 256x^8 \times \dfrac{1}{x^4} \\
&= 126720x^4 \\
\end{align} \)

Example 3

Find the coefficient of $x^6$ in the expansion of $\displaystyle\Big(x^2+\dfrac{4}{x}\Big)^{12}$.

\( \begin{align} \displaystyle
T_{k+1} &= \binom{12}{k}(x^2)^{12-k}\Big(\dfrac{4}{x}\Big)^k \\
&= \binom{12}{k}x^{24-2k}\dfrac{4^k}{x^k} \\
&= \binom{12}{k}4^k x^{24-2k-k} \\
&= \binom{12}{k}4^k x^{24-3k} \\
24-3k &= 6 \\
3k &= 18 \\
k &= 6 \\
T_{6+1} &= \binom{12}{6}4^6x^6 \\
&= 3784704 \\
\end{align} \)
Therefore the coefficient of $x^6$ is $3784704$.

Example 4

Find the constant term in the expansion of $\displaystyle\Big(2x^3+\dfrac{1}{x}\Big)^{12}$.

\( \begin{align} \displaystyle \require{color}
T_{k+1} &= \binom{12}{k}(2x^3)^{12-k}\Big(\dfrac{1}{x}\Big)^k \\
&= \binom{12}{k}2^{12-k}x^{36-3k}\Big(\dfrac{1}{x^k}\Big) \\
&= \binom{12}{k}2^{12-k}x^{36-3k-k} \\
&= \binom{12}{k}2^{12-k}x^{36-4k} \\
36-4k &= 0 &\color{red}\text{constant term}\\
k &= 9 \\
T_{9+1} &= \binom{12}{9}2^{12-9}x^0 \\
&= 1760
\end{align} \)
Therefore the constant term is $1760$.


Absolute Value Algebra Algebraic Fractions Arithmetic Sequence Binomial Expansion Chain Rule Circle Geometry Common Difference Common Ratio Compound Angle Formula Compound Interest Cyclic Quadrilateral Differentiation Discriminant Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Inequality Integration Kinematics Logarithm Logarithmic Functions Mathematical Induction Perfect Square Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Quotient Rule Rational Functions Sequence Sketching Graphs Surds Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published. Required fields are marked *