Function Notation


Definition of Function Notation


Consider the relation $y=3x+2$, which is a function.
The $y$-values are determined from the $x$-values, so we say ‘$y$ is a function of $x$, which is abbreviated to $y=f(x)$.
So, the rule $y=3x+2$ can be also be written as following.
$$f: \mapsto 3x+2$$
$$\text{or}$$
$$f(x)=3x+2$$
$$\text{or}$$
$$y=3x+2$$
Function $f$ such that $x$ is converted into $3x+2$.

Example 1

If $f(x)=4x-5$, find $f(2)$.

\( \begin{align} \displaystyle
f(2) &= 4 \times 2 – 5 \\
&= 3
\end{align} \)

Example 2

If $f(x)=x^2-5x+1$, find $f(-1)$.

\( \begin{align} \displaystyle
f(-1) &= (-1)^2-5(-1)+1 \\
&= 7
\end{align} \)

Example 3

If $f(x)=x^2-3x+2$, find $f(x+1)$.

\( \begin{align} \displaystyle
f(x+1) &= (x+1)^2-3(x=1)+2 \\
&= x^2+2x=1-3x-3+2 \\
&= x^2+x
\end{align} \)

Example 4

Given $f(x)=ax+b$, $f(1)=7$ and $f(2)=11$, find $a$ and $b$.

\( \begin{align} \displaystyle
f(1) &= 7 \\
a \times 1 +b &= 7 \\
a+b &= 7 \cdots (1) \\
f(2) &= 11 \\
a \times 2 + b &= 11 \\
2a+b &= 11 \cdots (2) \\
(2) &- (1) \\
(2a+b) – (a+b) &= 11-7 \\
a &= 4 \\
4 + b &= 7 \cdots (1) \\
b &= 3 \\
\end{align} \)


Algebra Algebraic Fractions Arc Binomial Expansion Capacity Chain Rule Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Proof Pythagoras Theorem Quadratic Quadratic Factorise Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published.