The solution of a differential equation is to find an expression without \( \displaystyle \frac{d}{dx} \) notations using given conditions.
Note that the proper rules must be in place to achieve a valid solution of the differential equations, such as the product, quotient, and chain rules.
Many students missed applying the chain rule, resulting in an unexpected differential equation outcome.
Take a look at the following example for a typical differential equation.
Question 1
A function \( f(x) \) is defined for all real \( x \) and \( y \) such that \( \require{color} f(x + y) = f(x)f(y) \text{ , and } f'(0) = 2 \).
Find \( f(x) \) in terms of \(x \).
\( \begin{aligned} \require{AMSsymbols} \require{color}
f(y) &= f(0)f(y) &\color{green} \text{substitute } x=0 \\
\therefore f(0)&=1 &\color{green} (1) \\
\frac{d}{dx}f(x + y) \times \frac{d}{dx}(x + y) &= \frac{d}{dx}f(x) \times f(y) + f(x) \times \frac{d}{dx}f(y) &\color{green} \text{differentiate both sides} \\
\frac{d}{dx}f(x + y) \times (1 + \frac{dx}{dy}) &= \frac{d}{dx}f(x) \times f(y) + f(x) \times \frac{d}{dx}f(y) \times \frac{dy}{dx} &\color{green} \frac{dy}{dx} = y’ \\
f'(x + y) \times (1 + y’) &= f'(x) \times f(y) + f(x) \times f'(y) \times y’ \\
f'(y) \times (1 + y’) &= f'(0) \times f(y) + f(0) \times f'(y) \times y’ &\color{green} \text{substitute } x=0 \\
f'(y) \times (1 + y’) &= 2 \times f(y) + f(0) \times f'(y) \times y’ &\color{green} \text{substitute } f'(0) = 2 \\
f'(y) + f'(y) y’ &= 2 f(y) + 1 \times f'(y) y’ &\color{green} \text{substitute } f(0) = 1 \\
f'(y) &= 2 f(y) \\
\frac{f'(y)}{f(y)} &=2 \\
\int \frac{f'(y)}{f(y)} \,dy &= \int 2 \,dy &\color{green} \text{integrate both sides} \\
\log_e f(y) &= 2y + C &\color{green} (2) \\
\log_e f(0) &= 2 \times 0 + C &\color{green} \text{substitute } y = 0 \\
\log_e 1 &= C &\color{green} \text{substitute } f(0) = 1 \\
\log_e f(y) &= 2y &\color{green} (2) \\
f(y) &= e^{2y} \\
\therefore f(x) &= e^{2x} \\
\end{aligned} \)
Question 2
Consider a differential equation, \( \displaystyle \frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 0 \).
(a) Show that, if \(y = f(t) \) and \( y = g(t) \) are both solutions to the differential equation and \(A\) and \(B\) are constants, then \(y = Af(t) + Bg(t) \) is a solution.
If \( y = f(t) \) is a solution of \( \require{AMSsymbols} \require{color} \displaystyle \frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 0 \), then \( \displaystyle \require{AMSsymbols} \require{color} \frac{d^2}{dt}f(t) +3\frac{d}{dt}f(t) + 2f(t) = 0 \color{green} \cdots (1) \)
If \( y = g(t) \) is a solution of \( \require{color} \displaystyle \frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 0 \), then \( \displaystyle \require{AMSsymbols} \require{color} \frac{d^2}{dt}g(t) +3\frac{d}{dt}g(t) + 2g(t) = 0 \color{green} \cdots (2) \)
\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
y &= Af(t) + Bg(t) \cdots \color{green} (3) \\
\frac{dy}{dt} &= A\frac{d}{dt}f(t)+B\frac{d}{dt}g(t) \cdots \color{green} (4) \\
\frac{d^2y}{dt^2} &= A\frac{d^2}{dt^2}f(t)+B\frac{d^2}{dt^2}g(t) \cdots \color{green} (5)
\end{aligned} \)
\( \begin{aligned} \displaystyle \require{AMSsymbols}\require{color}
A\frac{d^2}{dt^2}f(t)+ B\frac{d^2}{dt^2}g(t) + 3A\frac{d}{dt}f(t)+3B\frac{d}{dt}g(t) + 2Af(t) + 2Bg(t) &= 0 &\color{green} (3), (4), (5) \text{ into } \frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 0 \\
A \Big[\frac{d^2}{dt^2}f(t)+3\frac{d}{dt}f(t)+ 2f(t)\Big]+ B \Big[\frac{d^2}{dt^2}g(t) +3\frac{d}{dt}g(t) + 2g(t)\Big] &= 0 \\
A \times 0 + B \times 0 &= 0 &\color{green} \text{by (1) and (2)} \\
\therefore y = Af(t) + Bg(t) \text{ is a solution of } \frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y &= 0
\end{aligned} \)
(b) This gives a solution of the differential equation \(y = e^{kt} \) for some values \(k\). Find the possible values of \(k\).
\( \begin{aligned} \displaystyle \require{AMSsymbols} \require{color}
k^2e^{kt} + 3ke^{kt} + 2e^{kt} &= 0 \\
e^{kt}(k^2 + 3k + 2) &= 0 \\
e^{kt}(k + 1)(k + 2) &= 0 \\
\therefore k &= -1 \text{ or } -2 &\color{green} e^{kt} \ne 0 \\
\end{aligned} \)
(c) A solution of the differential equation is \( y = Ae^{-2t} + Be^{-t} \). When \( t=0 \), it is given that \(y=0\) and \( \displaystyle \frac{dy}{dx} = 1 \). Find the values of \(A\) and \(B\).
\( \begin{aligned} \displaystyle\require{AMSsymbols} \require{color}
0 &= Ae^{-2 \times 0} + Be^{-0} &\color{green} t=0 \text{ and } y=0 \\
0 &= A + B &\color{green} (1) \\
\frac{dy}{dx} &= -2Ae^{-2t}-Be^{-t} \\
1 &= -2Ae^{-2 \times 0}-Be^{-0} &\color{green} t=0 \text{ and } \frac{dy}{dx} = 1 \\
1 &= -2A-B &\color{green} (2) \\
\therefore A &= -1 \text{ and } B = 1 &\color{green} \text{solve (1) and (2) simultaneously} \end{aligned} \)
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume