Consider a curve $y=f(x)$.

A tangent to a curve is a straight line that touches the curve at a given point and represents the gradient of the curve at that point.
If $A$ is the point with $x$-coordinate $a$, then the gradient of the tangent line to the curve at this point is $f'(a)$. The equation of the tangent is;
$$y-f(a) = f'(a)(x-a)$$
Example 1
Find the equation of the tangent line to $f(x)=x^2$ at the point where $x=3$.
\( \begin{align} \displaystyle \require{AMSsymbols} \require{color}
f(3) &= 3^2 \\
&= 9 \\
f^{\prime}(x) &= 2x \\
f^{\prime}(3) &= 2 \times 3 \\
&= 6 \\
y-9 &= 6(x-3) &\color{red} y-f(3) = f^{\prime}(3)(x-3)\\
&= 6x-18 \\
\therefore y &= 6x-9 \\
\end{align} \)
Example 2
Find the equations of tangent lines to $f(x)=2x^2-8x$ at the point where the gradient is $4$?
\( \begin{align} \displaystyle \require{AMSsymbols} \require{color}
f^{\prime}(x) &= 4 \\
4x-8 &= 4 \\
4x &= 12 \\
x &= 3 \\
f(3) &= 2 \times 3^2-8 \times 3 \\
&= -6 \\
y-(-6) &= 4(x-3) &\color{red} y-f(3) = 4(x-3) \\
\therefore y &= 4x-18 \\
\end{align} \)
Example 3
Find the equations of the tangents to the curve $f(x)=x^2+3x-10$ at the points where the curve cuts the $x$-axis.
\( \begin{align} \displaystyle \require{AMSsymbols} \require{color}
f^{\prime}(x) &= 2x+3 \\
x^2+3x-10 &= 0 &\color{red} \text{the curve cuts the $x$axis} \\
(x+5)(x-2) &= 0 \\
x &= -5 \text{ or } x=2 \\
f^{\prime}(-5) &= 2 \times (-5)+3 &\color{red} \text{gradient at }x=-5\\
&= -7 \\
y – 0 &= -7(x- -5) &\color{red} y-f(-5) = f^{\prime}(-5)(x–5)\\
y &= -7x-35 \\
f^{\prime}(-5) &= 2 \times 2+3 &\color{red}\text{gradient at }x=2\\
&= 7 \\
y – 0 &= 7(x-2) &\color{red} y-f(2) = f^{\prime}(2)(x-2)\\
y &= 7x-14 \\
\therefore y &= -7x-35 \text{ and } y = 7x-14 \\
\end{align} \)
Example 4
Find the equations of any horizontal tangent lines to $f(x)=2x^3-3x^2-12x+1$.

$f^{\prime}(x) = 6x^2-6x-12$
Horizontal tangents have gradient $0$.
\( \begin{align} \displaystyle
6x^2-6x-12 &= 0 \\
x^2-x-2 &= 0 \\
(x+1)(x-2) &= 0 \\
x &= -1 \text{ or } x=2 \\
f(-1) &= 2(-1)^3-3(-1)^2-12(-1)+1 \\
&= 8 \\
f(2) &= 2(2)^3-3(2)^2-12(2)+1 \\
&= -19 \\
\end{align} \)
The points of contact are $(-1,8)$ and $(2,-19)$.
Therefore the horizontal tangent lines are $y=8$ and $y=-19$.
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume