Factorising Quadratics with Six Terms of \( x \) and \( y \) such as \( x^2 + 2xy + 5x + 5y + y^2 + 6 \)

Sometimes students may encounter complex quadratics factorise involving \( x^2, y^2, xy, x \) and \( y \). Consider factorising by only either \( x \) or \( y \). The following examples take through factorising \( y \) first, then \( x\).

Example 1

Factorise \( x^2 + 2xy + 5x + y^2+ 5y + 6 \).

\( \require{AMSsymbols} \begin{align} &= x^2 + 2xy + 5x + (y^2 + 5y+6) \\ &= x^2+\bbox[aqua,3px]{2xy + 5x}+(y+2)(y+3) \end{align} \)

\( \require{AMSsymbols} \begin{array} {ccr} &\bbox[yellow,5px]{x} &\bbox[pink]{(y+2)} &\bbox[pink]{x(y+2)=xy+2x} \\ &\bbox[pink,5px]{x} &\bbox[yellow]{(y+3)} &\bbox[yellow]{x(y+3)=xy+3x} \\ \hline &&&\bbox[aqua,3px]{2xy+5x} \end{array} \)

\( \require{AMSsymbols} \begin{align} &= (\bbox[yellow,5px]x+\bbox[pink]{(y+2)})(\bbox[pink,5px]x+\bbox[yellow]{(y+3)}) \\ &= (x+y+2)(x+y+3) \end{align} \)

Example 2

Factorise \( x^2-3xy-3x+2y^2+4y+2 \).

\( \require{AMSsymbols} \begin{align} &= x^2-3xy-3x+2(y^2+2y+1) \\ &= x^2\bbox[aqua,3px]{-3xy-3x}+2(y+1)(y+1) \end{align} \)

\( \require{AMSsymbols} \begin{array} {ccr} &\bbox[yellow,5px]{x} &\bbox[pink]{-(y+1)} &\bbox[pink]{-x(y+1)=-xy-x} \\ &\bbox[pink,5px]{x} &\bbox[yellow]{-2(y+1)} &\bbox[yellow]{-2x(y+1)=-2xy-2x} \\ \hline &&&\bbox[aqua,3px]{-3xy-3x} \end{array} \)

\( \require{AMSsymbols} \begin{align} &= (\bbox[yellow,5px]x\bbox[pink]{-(y+1)})(\bbox[pink,5px]x\bbox[yellow]{-2(y+1)}) \\ &= (x-y-1)(x-2y-2) \end{align} \)

Example 3

Factorise \( x^2+3xy+5x+2y^2+7y+6 \).

\( \require{AMSsymbols} \begin{align} &= x^2+3xy+5x+(2y^2+7y+6) \\ &= x^2+\bbox[aqua,3px]{3xy+5x}+(2y+3)(y+2) \end{align} \)

\( \require{AMSsymbols} \begin{array} {ccr} &\bbox[yellow,5px]{x} &\bbox[pink]{(2y+3)} &\bbox[pink]{x(2y+3)=2xy+3x} \\ &\bbox[pink,5px]{x} &\bbox[yellow]{(y+2)} &\bbox[yellow]{x(y+2)=xy+2x} \\ \hline &&&\bbox[aqua,3px]{3xy+5x} \end{array} \)

\( \require{AMSsymbols} \begin{align} &= (\bbox[yellow,5px]x+\bbox[pink]{(2y+3)})(\bbox[pink,5px]x+\bbox[yellow]{(y+2)}) \\ &= (x+2y+3)(x+y+2) \end{align} \)

Example 4

Factorise \( x^2-2xy+x-3y^2+5y-2 \).

\( \require{AMSsymbols} \begin{align} &= x^2-2xy+x-(3y^2-5y+2) \\ &= x^2\bbox[aqua,3px]{-2xy+x}-(3y-2)(y-1) \end{align} \)

\( \require{AMSsymbols} \begin{array} {ccr} &\bbox[yellow,5px]{x} &\bbox[pink]{-(3y-2)} &\bbox[pink]{-x(3y-2)=-3xy+2x} \\ &\bbox[pink,5px]{x} &\bbox[yellow]{(y-1)} &\bbox[yellow]{x(y-1)=xy-x} \\ \hline &&&\bbox[aqua,3px]{-2xy+x} \end{array} \)

\( \require{AMSsymbols} \begin{align} &= (\bbox[yellow,5px]x\bbox[pink]{-(3y-2)})(\bbox[pink,5px]x+\bbox[yellow]{(y-1)}) \\ &= (x-3y+2)(x+y-1) \end{align} \)

Example 5

Factorise \( 2x^2-7xy+11x+3y^2-13y+12 \).

\( \require{AMSsymbols} \begin{align} &= x^2-7xy+11x+(3y^2-13y+12) \\ &= 2x^2\bbox[aqua,3px]{-7xy+11x}+(3y-4)(y-3) \end{align} \)

\( \require{AMSsymbols} \begin{array} {rcr} &\bbox[yellow,5px]{x} &\bbox[pink]{-(3y-4)} &\bbox[pink]{-2x(3y-4)=-6xy+8x} \\ &\bbox[pink,5px]{2x} &\bbox[yellow]{-(y-3)} &\bbox[yellow]{-x(y-3)=-xy+3x} \\ \hline &&&\bbox[aqua,3px]{-7xy+11x} \end{array} \)

\( \require{AMSsymbols} \begin{align} &= (\bbox[yellow,5px]x\bbox[pink]{-(3y-4)})(\bbox[pink,5px]{2x}\bbox[yellow]{-(y-3)}) \\ &= (x-3y+4)(2x-y+3) \end{align} \)

Example 6

Factorise \( 12x^2+20xy-24x-8y^2+22y-15 \).

\( \require{AMSsymbols} \begin{align} &= 12x^2+20xy-24x-(8y^2-22y+15) \\ &= 12x^2+\bbox[aqua,3px]{20xy-24x}-(4y-5)(2y-3) \end{align} \)

\( \require{AMSsymbols} \begin{array} {rcr} &\bbox[yellow,5px]{2x} &\bbox[pink]{(4y-5)} &\bbox[pink]{6x(4y-5)=24xy-30x} \\ &\bbox[pink,5px]{6x} &\bbox[yellow]{-(2y-3)} &\bbox[yellow]{-2x(2y-3)=-4xy+6x} \\ \hline &&&\bbox[aqua,3px]{20xy-24x} \end{array} \)

\( \require{AMSsymbols} \begin{align} &= (\bbox[yellow,5px]{2x}+\bbox[pink]{(4y-5)})(\bbox[pink,5px]{6x}\bbox[yellow]{-(2y-3)}) \\ &= (2x+4y-5)(6x-2y+3) \end{align} \)

 

Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorials Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume




Your email address will not be published. Required fields are marked *