Factorial Notation

$n!$ is the product of the first $n$ positive integers for $n\ge 1$.
\( n!=n(n-1)(n-2)(n-3) \cdots \times 3 \times 2 \times 1 \)
$n!$ is read “$n$ factorial”.
For example, the product $5 \times 4 \times 3 \times 2 \times 1$ can be written as $5!$.
Notice that $5 \times 4 \times 3$ can be written using factorial numbers only as
\( 5 \times 4 \times 3 = \dfrac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1} = \dfrac{5!}{2!} \)
You can also notice that:
\( \begin{align}
n! &= n(n-1)(n-2)(n-3) \cdots \times 3 \times 2 \times 1 \\
&= n(n-1)! \\
&= n(n-1)(n-2)! \\
&= n(n-1)(n-2)(n-3)! \\
&= \cdots
\end{align} \)
Using this rule of factorial:
\( \begin{align}
1! &= 1 \times 0! \\
0! &= 1
\end{align} \)
Example 1
Evaluate $5!$.
\( \begin{align} \displaystyle
5! &= 5 \times 4 \times 3 \times 2 \times 1 \\
&= 120
\end{align} \)
Example 2
Evaluate $\dfrac{6!}{4!}$.
\( \begin{align} \displaystyle
\dfrac{6!}{4!} &= \dfrac{6 \times 5 \times 4!}{4!} \\
&= 6 \times 5 \\
&= 30
\end{align} \)
Example 3
Evaluate $\dfrac{7!}{4! \times 3!}$.
\( \begin{align} \displaystyle
\dfrac{7!}{4! \times 3!} &= \dfrac{7 \times 6 \times 5 \times 4!}{4! \times 3!} \\
&= \dfrac{7 \times 6 \times 5}{3!} \\
&= \dfrac{7 \times 6 \times 5}{3 \times 2 \times 1} \\
&= 35
\end{align} \)
Algebra Algebraic Fractions Arc Binomial Expansion Capacity Common Difference Common Ratio Differentiation Double-Angle Formula Equation Exponent Exponential Function Factorise Functions Geometric Sequence Geometric Series Index Laws Inequality Integration Kinematics Length Conversion Logarithm Logarithmic Functions Mass Conversion Mathematical Induction Measurement Perfect Square Perimeter Prime Factorisation Probability Product Rule Proof Pythagoras Theorem Quadratic Quadratic Factorise Ratio Rational Functions Sequence Sketching Graphs Surds Time Transformation Trigonometric Functions Trigonometric Properties Volume
Responses